[1] R. B: Holmes:
Geometrical Functional Analysis and Its Applications. Springer-Verlag, New York - Heidelberg - Berlin 1975.
MR 0410335
[2] I. Ekeland, R. Temam: Analyse Convexe et Problemes Variationelles. Dunod, Paris 1974.
[3] J. Bair:
On the convex programming problem in an ordered vector space. Bull. Soc. Royal Science LIEGE 46 (1977), 234 - 240.
MR 0493762 |
Zbl 0378.90079
[4] E. G. Golstein:
Duality Theory in Mathematical Programming and Its Applications. Nauka, Moscow 1971. In Russian.
MR 0322531
[5] V. V. Podinovskij, V.D. Nogin: Pareto optimal solutions in multiobjective problems. Nauka, Moscow 1982. In Russian.
[6] G.S. Rubinstein:
Duality in mathematical programming and some questions of convex analysis. Uspekhi mat. nauk 25 (1970), 5, 155, 171 - 201. In Russian.
MR 0293989
[7] M. Vlach:
On necessary conditions of optimality in linear spaces. Comment. Math. Univ. Carol. 11 (1970), 3, 501 - 503.
MR 0288603 |
Zbl 0206.12005
[8] M. Vlach:
A separation theorem for finite families. Comment. Math. Univ. Carol. 12 (1971), 4, 655 - 670.
MR 0290126 |
Zbl 0229.52008
[9] M. Vlach:
A note on separation by linear mappings. Comment. Math. Univ. Carol. 18 (1977), 1, 167 - 168.
MR 0433328 |
Zbl 0345.52001
[10] Tran Quoc Chien:
Duality in vector optimization. Part I: Abstract duality scheme. Kybernetika 20 (1984), 4, 304-313.
MR 0768510
[11] Tran Quoc Chien:
Duality in vector optimization. Part II: Vector quasiconcave programming. Kybernetika 20 (1984), 5, 386 - 404.
MR 0776328
[12] Tran Quoc Chien:
Duality in vector optimization. Part III: Vector partially quasiconcave programming and vector fractional programming. Kybernetika 20 (1984), 6, 458 - 472.
MR 0777980
[13] Tran Quoc Chien:
Fenchel-Lagrange duality in vector fractional programming via abstract duality scheme. Kybernetika 23 (1986), 4, 299 - 319.
MR 0868023 |
Zbl 0616.90081
[14] Tran Quoc Chien:
Parturbation theory of duality in vector optimization via abstract duality scheme. Kybernetika 23 (1987), 1, 67 - 81.
MR 0883908
[15] I. Singer:
Optimization by level set methods VI: Generalization of surrogate type reverse convex duality. Optimization 18 (1987), 4, 485 - 499.
MR 0909657
[16] I. Singer:
Maximization of lower semicontinuous convex functionals on bounded subsets of locally convex spaces I: Hyperplane theorems. Appl. Math. Optim. 5 (1979), 349 - 362.
MR 0551081
[17] I. Singer:
A general theory of surrogate dual and perturbational extended surrogate dual optimization problems. J. Math. Anal. Appl. 104 (1984), 351 - 389.
MR 0766133 |
Zbl 0607.90089
[18] I. Singer:
Surrogate dual problems and surrogate Lagrangians. J. Math. Anal. Appl. 98 (1984), 31 - 71.
MR 0728516 |
Zbl 0584.49006
[19] J.-E. Martinez Legaz, I. Singer:
Surrogate duality for vector optimization. Numer. Funct. Anal. Optim. 9 (1987), 5-6, 544-568.
MR 0895984 |
Zbl 0609.49012
[20] I. Singer:
Minimization of continuous convex functionals on complements of convex subsets of locally convex space. Math. Operationsforsch. Statist. Ser. Optim. 11 (1980), 221 - 234.
MR 0640688
[21] I. Singer:
Extension with larger norm and separation with double support in normed linear spaces. Bull. Austral. Math. Soc. 21 (1980), 93 - 105.
MR 0569090
[22] I. Singer:
Optimization and best approximation. In: Nonlinear Analysis, Theory and Applications (R. Kluge, ed.), Abh. Akad. Wiss. DDR, Berlin 1981, pp. 275 - 285.
MR 0639931 |
Zbl 0472.41023