[1] C. Calude: 
Theories of Computational Complexity. North-Holland, Amsterdam - New York - Oxford - Tokyo 1988. 
MR 0919945 | 
Zbl 0633.03034[2] T. L. Fine: 
Theories of Probability - an Examination of Foundations. Academic Press, New York 1973. 
MR 0433529 | 
Zbl 0275.60006[3] I. Kramosil, J. Šindelář: 
Infinite pseudo-random sequences of high algorithmic complexity. Kybernetika 20 (1984), 6, 429-437. 
MR 0777977[4] I. Kramosil, J. Šindelář: 
A note on the law of iterated logarithm from the viewpoint of Kolmogorov program complexity. Problems Control Inform. Theory 16 (1987), 6, 399-409. 
MR 0930650[5] P. Martin-Löf: 
The definition of random sequences. Inform, and Control 9 (1966), 4, 602-619. 
MR 0223179[6] P. Martin-Löf: 
Complexity oscillations in infinite binary sequences. Z. Wahrsch. Verw. Gebiete 19 (1971), 2, 225-230. 
MR 0451322[7] V. G. Vovk: 
The law of the iterated logarithm for sequences that are random in the sense of Kolmogorov or chaotic (in Russian). Teor. Veroyatnost. i Primenen. 32 (1987), 3, 456-468. 
MR 0914936