Previous |  Up |  Next

Article

Title: A local structure of stationary perfectly noiseless codes between stationary non-ergodic sources. I. General considerations (English)
Author: Šujan, Štefan
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 18
Issue: 5
Year: 1982
Pages: 361-375
.
Category: math
.
MSC: 94A15
MSC: 94A29
MSC: 94B99
idZBL: Zbl 0504.94021
idMR: MR686518
.
Date available: 2009-09-24T17:29:36Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125868
.
Related article: http://dml.cz/handle/10338.dmlcz/124853
Related article: http://dml.cz/handle/10338.dmlcz/124795
.
Reference: [1] P. Billingsley: Ergodic Theory and Information.Wiley, New York 1965. Zbl 0141.16702, MR 0192027
Reference: [2] R. Bowen: Equilibrium States and the ErgodicTheory of Anosov Diffeomorphisms.(Lecture Notes in Mathematics 470.) Springer - Verlag, Berlin-Heidelberg-New York 1975.
Reference: [3] M. Denker: Finite generators for ergodic, measure-preserving transformations.Z. Wahrsch. verw. Gebiete 29 (1974), 45-55. MR 0382587
Reference: [4] M. Denker, Ch. Grillenberger, and K. Sigmund: Ergodic Theory on Compact Spaces.(Lecture Notes in Mathematics 527.) Springer - Verlag, Berlin -Heidelberg-New York 1976. MR 0457675
Reference: [5] M. Denker, M. Keane: Almost topological dynamical systems.Israel J. Math. 34 (1979), 139-160. Zbl 0441.28008, MR 0571401
Reference: [6] P. R. Halmos: Measure Theory.D. Van Nostrand, Princeton, N. J. 1950. Zbl 0040.16802, MR 0033869
Reference: [7] M. Keane, M. Smorodinsky: Bernoulli schemes of the same entropy are finitarily isomorphic.Ann. of Math. 109 (1979), 387-406. Zbl 0405.28017, MR 0528969
Reference: [8] J. C. Kieffer: Zero-error stationary coding over stationary channels.Z. Wahrsch. verw. Gebiete 56 (1981), 113-126. Zbl 0444.94007, MR 0612163
Reference: [9] J. C. Kieffer, M. Rahe: Selecting universal partitions in ergodic theory.Ann. Probab. 9 (1981), 705-709. Zbl 0464.60036, MR 0624699
Reference: [10] W. Krieger: On entropy and generators of measure-preservirg transformations.Trans. Amer. Math. Soc. 149 (1970), 453-464, Erratum, ibid. 168 (1972), 519. MR 0259068
Reference: [11] D. S. Ornstein: Bernoulli shifts with the same entropy are isomorphic.Adv. in Math. 4 (1970), 337-352. Zbl 0197.33502, MR 0257322
Reference: [12] D. S. Ornstein: Ergodic Theory, Randomness, and Dynamical Systems.Yale Univ. Press, New Haven and London 1974. Zbl 0296.28016, MR 0447525
Reference: [13] J. C. Oxtoby: Ergodic sets.Bull. Amer. Math. Soc. 55 (1952), 116-136. Zbl 0046.11504, MR 0047262
Reference: [14] W. Parry: Entropy and Generators in Ergodic Theory.W. A. Benjamin, New York -Amsterdam 1969. Zbl 0175.34001, MR 0262464
Reference: [15] V. A. Rohlin: On the basic concepts of measure theory.(in Russian). Matem. Sborn. 25 (67) (1949), 107-150.
Reference: [16] P. C. Shields: Stationary coding of processes.IEEE Trans. Inform. Theory IT-25 (1979), 293-291. Zbl 0401.94018, MR 0528006
Reference: [17] M. Smorodinsky: Ergodic Theory, Entropy.(Lecture Notes in Mathematics 214.) Springer -Verlag, Berlin-Heidelberg-New York 1971. Zbl 0213.07502, MR 0422582
Reference: [18] K. Winkelbauer: On the asymptotic rate of non-ergodic information sources.Kybernetika 6 (1970), 127-148. Zbl 0245.94013, MR 0275979
Reference: [19] K. Winkelbauer: On the existence of finite generators for invertible measure-preserving transformations.Comment. Math. Univ. Carolinae 18 (1977), 789-812. Zbl 0368.28020, MR 0463403
.

Files

Files Size Format View
Kybernetika_18-1982-5_1.pdf 808.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo