Previous |  Up |  Next

Article

Title: Characteristic polynomial assignment for delay-differential systems via 2-D polynomial equations (English)
Author: Šebek, Michael
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 23
Issue: 5
Year: 1987
Pages: 345-359
.
Category: math
.
MSC: 34K35
MSC: 93B20
MSC: 93B25
MSC: 93B55
MSC: 93C05
MSC: 93D15
idZBL: Zbl 0629.93033
idMR: MR915686
.
Date available: 2009-09-24T18:01:21Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/125877
.
Reference: [1] R. Bellman, K. L. Cooke: Differential-Difference Equations.Academic Press, New York 1963. Zbl 0105.06402, MR 0147745
Reference: [2] C. I. Byrnes M. W. Spong, T. J. Tarn: A several complex variables approach to feedback stabilization of linear neutral delay-differential systems.Math. Systems Theory (to appear). MR 0739983
Reference: [3] J. N. Chiasson: Control and Regulation of Generalized Systems.Ph. D. Thesis, University of Minnesota 1984.
Reference: [4] J. N. Chiasson, E. B. Lee: Coefficient assignment by dynamic compensation for single input single output retarded delay systems.1984 CDC, Las Vegas.
Reference: [5] J. N. Chiasson, E. B. Lee: Coefficient assignment for SISO neutral delay systems.3rd Int. Conf. Syst. Eng., Wright State Univ., Sept. 1984.
Reference: [6] E. Emre: The polynomial equation $QQ_{c} + RP_{c} = \Phi$ with application to dynamic feedback.SIAM J. Control Optim. 18 (1980), 611-620. MR 0592921
Reference: [7] E. Emre: Regulation of linear systems over rings by dynamic output feedback.Syst. Control Lett. 3 (1983), 57-62. Zbl 0516.93037, MR 0713428
Reference: [8] E. Emre, G. J. Knowles: Control of linear systems with fixed point delays.IEEE Trans. Automat. Control AC-29 (1984), 1083-1090. MR 0771397
Reference: [9] E. Emre, P. Khargonekar: Regulation of split linear systems over rings: coefficients-assignment and observers.IEEE Trans. Automat. Control AC-27 (1982), 1, 104-113. MR 0673076
Reference: [10] J. Ježek: New algorithm for minimal solution of linear polynomial equations.Kybernetika 18 (1982), 6, 505-515. MR 0707398
Reference: [11] E. W. Kamen: On an algebraic theory of systems defined by convolution operators.Math. Systems Theory 9 (1975), 57-74. Zbl 0318.93003, MR 0395953
Reference: [12] V. Kučera: Discrete Linear Control: The Polynomials Equation Approach.John Wiley, Chichester 1979. MR 0573447
Reference: [13] V. Kučera: Design of internally proper and stable control systems.IFAC Congress 1984, Budapest.
Reference: [14] E. B. Lee, A. Olbrot: On reachability over polynomial rings and related genericity problem.Internat. J. Systems Sci. 13 (1982), 109-113. MR 0703067
Reference: [15] A. Z. Manitius, A. Olbrot: Finite spectrum assignment for systems with delays.IEEE Trans. Automat. Control AC-24 (1979), 541-553. MR 0538808
Reference: [16] A. S. Morse: Ring models for delay-differential systems.Automatica 12 (1976), 529-531. Zbl 0345.93023, MR 0437162
Reference: [17] D. A. O'Connor, T. J. Tarn: On stabilizabilization by state feedback for neutral differential difference equations.IEEE Trans. Automat. Control AC-28 (1983), 615-618. MR 0712958
Reference: [18] P. N. Paraskevopoulos, O. I. Kosmidou: Eigenvalue assignment of two-dimensional systems using PID controllers.Internat. J. Systems Sci. 12 (1981), 4, 407-422. Zbl 0466.93036, MR 0613744
Reference: [19] M. Spong: On feedback equivalence of retarded and neutral delay-differential equations.1983 Allerton Conference. MR 0756424
Reference: [20] M. Šebek: 2-D polynomial equations.Kybernetika 19 (1983), 3, 212-224. MR 0716650
Reference: [21] M. Šebek: On 2-D pole placement. IEEE Trans.Automat. Control AC-30 (1985), 819-822. MR 0794230
Reference: [22] B. L. van der Waerden: Modern Algebra.4th edition. Fred. Ungar, New York 1964.
Reference: [23] K. Watanabe M. Ito M. Kaneko, T. Ouchi: Finite spectrum assignment problem for systems with delay in state variable.IEEE Trans. Automat. Control AC-27 (1983), 913-926. MR 0722204
.

Files

Files Size Format View
Kybernetika_23-1987-5_1.pdf 806.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo