Previous |  Up |  Next

Article

References:
[1] K. W. Brodlie A. R. Gourlay, and J. Greenstadt: Rank one and two corrections to positive definite matrices expressed in product form. J. Inst. Math. Appl. 11 (1973), 1, 73 - 82. MR 0331770
[2] R. Fletcher: The calculation of feasible points for linearly constrained optimization problems. A.E.R.E. Harwell Rept. No. R-6354 (1970).
[3] P. E. Gill, W. Murray: A numerically stable form of the simplex algorithm. Linear Algebra Appl. 7 (1973), 2,99-138. MR 0321519 | Zbl 0255.65029
[4] P. E. Gill, W. Murray: Newton-type methods for unconstrained and linearly constrained optimization. Math. Programming 7 (1974), 3, 311 - 350. MR 0356503 | Zbl 0297.90082
[5] S. P. Han: Variable metric methods for minimizing a class of nondifferentiable functions. Math. Programming 20 (1981), 1, 1-13. MR 0594019 | Zbl 0441.90095
[6] L. Lukšan: Software package for optimization and nonlinear approximation. Proc. of the 2nd IFAC/IFIP Symposium on Software for Computer Control, Prague 1979.
[7] L. Lukšan: Quasi-Newton methods without projections for linearly constrained minimization. Kybernetika 18 (1982), 4, 307-319. MR 0688369
[8] L. Lukšan: Variable metric methods for linearly constrained nonlinear minimax approximation. Computing 30 (1983), 3, 315-334. MR 0706672
[9] L. Lukšan: Dual method for solving a special problem of quadratic programming as a sub-problem at linearly constrained nonlinear minimax approximation. Kybernetika 20 (1984), 6, 445-457. MR 0777979
[10] L. Lukšan: A compact variable metric algorithm for nonlinear minimax approximation. Computing (to appear). MR 0843944
[11] L. Lukšan: An implementation of recursive quadratic programming variable metric methods for linearly constrained nonlinear minimax approximation. Kybernetika 21 (1985), 1, 22-40. MR 0788667
[12] K. Madsen, H. Schjaer-Jacobsen: Linearly constrained minimax optimization. Math. Programming 14 (1978), 2, 208-223. MR 0472055 | Zbl 0375.65034
[13] M. J. D. Powell: A fast algorithm for nonlinearly constrained optimization calculations. In: Numerical Analysis, Dundee 1977 (G. A. Watson, ed.), Lecture Notes in Mathematics 630, Springer-Verlag, Berlin 1978. MR 0483447
[14] K. Ritter: A variable metric method for linearly constrained minimization problems. In: Nonlinear Programming 3 (O. L. Mangasarian, R. R. Meyer and S. M. Robinson, eds.), Academic Press, London 1978. MR 0507864 | Zbl 0464.65041
[15] P. Wolfe: Finding the nearest point in a polytope. Math. Programming 11 (1976), 2, 128-149. MR 0452683 | Zbl 0352.90046
Partner of
EuDML logo