Previous |  Up |  Next

Article

Title: $\Sigma$-isomorphic algebraic structures (English)
Author: Chajda, Ivan
Author: Emanovský, Petr
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 120
Issue: 1
Year: 1995
Pages: 71-81
Summary lang: English
.
Category: math
.
Summary: For an algebraic structure $\A=(A,F,R)$ or type $\t$ and a set $\Sigma$ of open formulas of the first order language $L(\t)$ we introduce the concept of $\Sigma$-closed subsets of $\A$. The set $\C_\Sigma(\A)$ of all $\Sigma$-closed subsets forms a complete lattice. Algebraic structures $\A$, $\B$ of type $\t$ are called $\Sigma$-isomorphic if $\C_\Sigma(\A)\cong\C_\Sigma(\B)$. Examples of such $\Sigma$-closed subsets are e.g. subalgebras of an algebra, ideals of a ring, ideals of a lattice, convex subsets of an ordered or quasiordered set etc. We study $\Sigma$-isomorphic algebraic structures in dependence on the properties of $\Sigma$. (English)
Keyword: closure system
Keyword: isomorphism
Keyword: lattice of $\Sigma$-closed subsets
Keyword: subalgebras
Keyword: ideals
Keyword: algebraic structure
Keyword: $\Sigma$-closed subset
Keyword: $\Sigma$-isomorphic structures
MSC: 03C05
MSC: 04A05
MSC: 06B10
MSC: 08A05
idZBL: Zbl 0833.08001
idMR: MR1336947
DOI: 10.21136/MB.1995.125890
.
Date available: 2009-09-24T21:09:06Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125890
.
Reference: [1] Birkhoff G., Bennet M. K.: The convexity lattice of a poset.Order 2 (1985), 223-242. MR 0824696
Reference: [2] Blum E. K., Estes D. R.: A generalization of the homomorphism concepts.Algebra Univ. 7 (1977), 143-161. MR 0434926, 10.1007/BF02485424
Reference: [3] Chajda I.: Lattices in quasiordered sets.Acta Univ. Palack. Olom. 31 (1992), 6-12. Zbl 0773.06002, MR 1212600
Reference: [4] Emanovský P.: Convex isomorphic ordered sets.Matem. Bohem. 118 (1993), 29-35. MR 1213830
Reference: [5] Emanovský P.: Convex isomorphism of q-lattices.Matem. Bohem. 118 (1993), 37-42. Zbl 0780.06002, MR 1213831
Reference: [6] Grätzer G.: Universal algebra.(2nd edition), Springer-Verlag, 1979. MR 0538623
Reference: [7] Jakubíková-Studenovská D.: Convex subsets of partial monounary algebras.Czech. Math. J. 38 (113) (1988), 655-672. MR 0962909
Reference: [8] Maľcev A. I: Algebraic systems.Nauka, Moskva, 1970. (In Russian.) MR 0282908
Reference: [9] Marmazajev V. I.: The lattice of convex sublattices of a lattice.Mezvužovskij naučnyj sbornik 6. Saratov, 1986, pp. 50-58. (In Russian.) MR 0957970
Reference: [10] Snášel V.: $\lambda$-lattices.PhD - thesis. Palacky University, Olomouc, 1991.
Reference: [11] Chajda I., Halas R.: Genomorphism of lattices and semilattices.Acta-UPO. To appear. MR 1385742
.

Files

Files Size Format View
MathBohem_120-1995-1_6.pdf 626.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo