Title:
|
$\Sigma$-isomorphic algebraic structures (English) |
Author:
|
Chajda, Ivan |
Author:
|
Emanovský, Petr |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
120 |
Issue:
|
1 |
Year:
|
1995 |
Pages:
|
71-81 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For an algebraic structure $\A=(A,F,R)$ or type $\t$ and a set $\Sigma$ of open formulas of the first order language $L(\t)$ we introduce the concept of $\Sigma$-closed subsets of $\A$. The set $\C_\Sigma(\A)$ of all $\Sigma$-closed subsets forms a complete lattice. Algebraic structures $\A$, $\B$ of type $\t$ are called $\Sigma$-isomorphic if $\C_\Sigma(\A)\cong\C_\Sigma(\B)$. Examples of such $\Sigma$-closed subsets are e.g. subalgebras of an algebra, ideals of a ring, ideals of a lattice, convex subsets of an ordered or quasiordered set etc. We study $\Sigma$-isomorphic algebraic structures in dependence on the properties of $\Sigma$. (English) |
Keyword:
|
closure system |
Keyword:
|
isomorphism |
Keyword:
|
lattice of $\Sigma$-closed subsets |
Keyword:
|
subalgebras |
Keyword:
|
ideals |
Keyword:
|
algebraic structure |
Keyword:
|
$\Sigma$-closed subset |
Keyword:
|
$\Sigma$-isomorphic structures |
MSC:
|
03C05 |
MSC:
|
04A05 |
MSC:
|
06B10 |
MSC:
|
08A05 |
idZBL:
|
Zbl 0833.08001 |
idMR:
|
MR1336947 |
DOI:
|
10.21136/MB.1995.125890 |
. |
Date available:
|
2009-09-24T21:09:06Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/125890 |
. |
Reference:
|
[1] Birkhoff G., Bennet M. K.: The convexity lattice of a poset.Order 2 (1985), 223-242. MR 0824696 |
Reference:
|
[2] Blum E. K., Estes D. R.: A generalization of the homomorphism concepts.Algebra Univ. 7 (1977), 143-161. MR 0434926, 10.1007/BF02485424 |
Reference:
|
[3] Chajda I.: Lattices in quasiordered sets.Acta Univ. Palack. Olom. 31 (1992), 6-12. Zbl 0773.06002, MR 1212600 |
Reference:
|
[4] Emanovský P.: Convex isomorphic ordered sets.Matem. Bohem. 118 (1993), 29-35. MR 1213830 |
Reference:
|
[5] Emanovský P.: Convex isomorphism of q-lattices.Matem. Bohem. 118 (1993), 37-42. Zbl 0780.06002, MR 1213831 |
Reference:
|
[6] Grätzer G.: Universal algebra.(2nd edition), Springer-Verlag, 1979. MR 0538623 |
Reference:
|
[7] Jakubíková-Studenovská D.: Convex subsets of partial monounary algebras.Czech. Math. J. 38 (113) (1988), 655-672. MR 0962909 |
Reference:
|
[8] Maľcev A. I: Algebraic systems.Nauka, Moskva, 1970. (In Russian.) MR 0282908 |
Reference:
|
[9] Marmazajev V. I.: The lattice of convex sublattices of a lattice.Mezvužovskij naučnyj sbornik 6. Saratov, 1986, pp. 50-58. (In Russian.) MR 0957970 |
Reference:
|
[10] Snášel V.: $\lambda$-lattices.PhD - thesis. Palacky University, Olomouc, 1991. |
Reference:
|
[11] Chajda I., Halas R.: Genomorphism of lattices and semilattices.Acta-UPO. To appear. MR 1385742 |
. |