Previous |  Up |  Next

Article

Keywords:
discrete Wirtinger’s inequality; regular polygons
Summary:
Die diskrete Ungleichung von W. Wirtinger wird aus den Eigenschaften der auf den mehrdimensionalen Raumen liegenden Polygone gefolgert.
References:
[1] R. Alexander: Metrix embedding techniques applied to geometric inequalities. Lecture Notes in Math. 490 (1975), 57-65. DOI 10.1007/BFb0081131 | MR 0405245
[2] W. Blaschke: Kreis und Kugel. Leipzig, 1916, 1956. MR 0077958
[3] H. D. Block: Discrete Analogues of Certain Integral Inequalities. Proc. Amer. Math. Soc. 8 (1957), 852-859. DOI 10.1090/S0002-9939-1957-0092831-X | MR 0092831 | Zbl 0081.04504
[4] K. Fan O. Taussky J. Todd: Discrete Analogs of Inequalities of Wirtinger. Monatsh. Math. 59 (1955), 73-90. MR 0070676
[5] J. Novotná: Discrete Analogues of Wirtinger's Inequality for a Two-Dimensional Array. Čas. pěst. mat. 105 (1980), 354-362. MR 0597912 | Zbl 0454.26007
[6] J. Novotná: A Sharpening of Discrete Analogues of Wirtinger's Inequality. Čas. pěst. mat. 108 (1983), 70-77. MR 0694141 | Zbl 0521.26008
[7] J. Novotná: Discrete Analogues of Certain Inequalities of the Wirtinger Type Involving a Function and Its First and Second Derivatives. Rad Hrvatske akad. znan. umj. mat. 10 (1991), 217-255. MR 1211612
[8] O. Shisha: On the Discrete Version of Wirtinger's Inequality. Amer. Math. Monthly 80 (1973), 755-760. DOI 10.2307/2318162 | MR 0322688 | Zbl 0269.26017
[9] I. J. Schoenberg: The Finite Fourier Series and Elementary Geometry. Amer. Math. Monthly 57 (1950), 390-404. DOI 10.2307/2307639 | MR 0036332 | Zbl 0038.35602
Partner of
EuDML logo