Previous |  Up |  Next

Article

Title: Consistent models for electrical networks with distributed parameters (English)
Author: Marinov, Corneliu A.
Author: Moroşanu, Gheorghe
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 117
Issue: 2
Year: 1992
Pages: 113-122
Summary lang: English
.
Category: math
.
Summary: A system of one-dimensional linear parabolic equations coupled by boundary conditions which include additional state variables, is considered. This system describes an electric circuit with distributed parameter lines and lumped capacitors all connected through a resistive multiport. By using the monotony in a space of the form $L^2(0,T;H^1)$, one proves the existence and uniqueness of a variational solution, if reasonable engineering hypotheses are fulfilled. (English)
Keyword: weak solution
Keyword: system of one-dimensional linear parabolic equations
Keyword: additional state variables
Keyword: lumped capacitors
Keyword: resistive multiport
Keyword: existence and uniqueness of variational solution
Keyword: initial-boundary value problem
Keyword: monotone operators
Keyword: parabolic equations
Keyword: variational solution
MSC: 35A15
MSC: 35K40
MSC: 35K45
MSC: 35K50
MSC: 47B44
MSC: 47N70
MSC: 78A25
idZBL: Zbl 0762.35044
idMR: MR1165887
DOI: 10.21136/MB.1992.125904
.
Date available: 2009-09-24T20:51:01Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125904
.
Reference: [1] V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces.Noordhoff, Leyden, 1976. Zbl 0328.47035, MR 0390843
Reference: [2] V. Barbu. T. Precupanu: Convexity and Optimization in Banach Spaces.D. Reidel Publ. Co., Dordrecht, Boston, Lancaster, 1987. MR 0860772
Reference: [3] K. L. Cookej D. W. Krumme: Differential-difference equations and nonlinear initial boundary value problems for hyperbolic partial differential equations.J. Math. Anal. Appl. 24 (1968), 372-387. MR 0232089, 10.1016/0022-247X(68)90038-3
Reference: [4] M. S. Ghausi J. J. Kelly: Introduction to Distributed Parameter Networks with Applications to Integrated Circuits.Holt, Rinehart Winston, New-York, 1968.
Reference: [5] C. A. Marinov: Qualitative properties of $l^p$ solutions of infinite differential systems via dissipativity.Nonlinear Analysis T.M.A. 8 (1984), 441-456. MR 0741600
Reference: [6] C. A. Marinov: The delay time for a rcg line.Int. J. Circuit Theory Appl. 15 (1987), 79-83. 10.1002/cta.4490150107
Reference: [7] C. A. Marinov A. Lehtonen: Mixed-type circuits with distributed and lumped parameters.IEEE Trans. Circ. Syst. CAS-36 no. 8 (1989), 1080-1086. MR 1003241, 10.1109/31.192416
Reference: [8] C. A. Marinov P. Neittaanmaki: Delay time for general distributed-networks with applications to timing analysis of digital MOS integrated circuits.Simulation of Semiconductor Devices and Processes, vol. 2 (K. Board, D. R. J. Owen, eds.), Pineridge Press, 1986, pp. 322-336.
Reference: [9] C. A. Marinov, P, Neittaanmaki: A theory of electrical circuits with resistively coupled distributed structures. Delay time pradicting.IEEE Trans. Circ. Syst. CAS-35 no. 2 (Feb. 1988), 166-175. 10.1109/31.1719
Reference: [10] C. A. Marinov, P, Niettaanmaki: Asymptotical convergence evalution for a parabolic problem arising in circuits theory.ZAMM, Z. Angew. Math. Mech. 70 no. 8 (1990), 344-347. MR 1068943, 10.1002/zamm.19900700821
Reference: [11] C. A. Marinov P. Neittaanmaki: A delay time bound distributed parameter circuits with bipolar transistors.Int. J. Circ. Th. Appl. 18 (1990), 99-106. MR 1033396, 10.1002/cta.4490180111
Reference: [12] G. Morosanu: Nonlinear Evolution Equations and Applications.D. Riedel Publ. Co., Dordrecht, Boston, Lancaster, 1987. MR 0965764
Reference: [13] G. Moroşanu: Mixed problems for a class of nonlinear differential hyperbolic systems.J. Math. Anal. Appl. 33 (1971), 470-485. MR 0641346
Reference: [14] G. Moroşanu C. A. Marinov P. Neittaanmaki: Well-posed nonlinear problems in integrated circuits modelling.Circ. Syst. Sign. Proc. 10 (1991), 53-69. MR 1086946
Reference: [15] G. Prada T. A. Bickart: Stability of electrical network containing distributed RC components.J. Math. Anal. Appl. 33 (1971), 367-401. MR 0278837, 10.1016/0022-247X(71)90063-1
Reference: [16] R. E. Showalter C. H. Snyder: A distributed RC network model with dielectric loss.IEEE Trans. Circ. Syst. CAS-33 (1986), 707-710. 10.1109/TCS.1986.1085985
Reference: [17] J. Rubinstein P. Penfield M. Horowitz: Signal delay in RC tree networks.IEEE Trans. Comp. Aided Design CAD-2 (1983), 202-211. 10.1109/TCAD.1983.1270037
Reference: [18] J. L. Wyatt, Jr.: Monotone sensitivity of nonlinear nonuniform RC transmission lines with applications to timing analysis of digital MOS integrated circuits.IEEE Trans. Circ. Syst. CAS-32 (1985), 28-33. 10.1109/TCS.1985.1085597
.

Files

Files Size Format View
MathBohem_117-1992-2_1.pdf 1.366Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo