Previous |  Up |  Next

Article

Title: Spectral properties of fourth order differential operators (English)
Author: Došlý, Ondřej
Author: Hilscher, Roman
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 122
Issue: 2
Year: 1997
Pages: 153-168
Summary lang: English
.
Category: math
.
Summary: Necessary and sufficient conditions for discreteness and boundedness below of the spectrum of the singular differential operator $\ell(y)\equiv{1\over w(t)}\ddif{(r(t)\ddif{y})}$, $t\in[a,\infty)$ are established. These conditions are based on a recently proved relationship between spectral properties of $\ell$ and oscillation of a certain associated second order differential equation. (English)
Keyword: singular differential operators
Keyword: property BD
Keyword: oscillation criteria
Keyword: principal solution
MSC: 34B05
MSC: 34C10
MSC: 34L05
idZBL: Zbl 0894.34028
idMR: MR1460945
DOI: 10.21136/MB.1997.125911
.
Date available: 2009-09-24T21:24:24Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125911
.
Reference: [1] C. D. Ahlbrandt D. B. Hinton. R. T. Lewis: Necessary and sufficient conditions for the discreteness of the spectrum of certain singular differential operators.Canad. J. Math. 33 (1981), 229-246. MR 0608867, 10.4153/CJM-1981-019-1
Reference: [2] C. D. Ahlbrandt D. B. Hinton. R. T. Lewis: The effect of variable change on oscillation and disconjugacy criteria with applications to spectral theory and asymptotic theory.J. Math. Anal. Appl. 81 (1981), 234-277. MR 0618771, 10.1016/0022-247X(81)90060-3
Reference: [3] W. A. Coppel: Disconjugacy.Lectures Notes in Math., No. 220, Springer-Verlag, Berlin, 1971. Zbl 0224.34003, MR 0460785
Reference: [4] O. Došlý: Spectral properties of a class of singular differential operators.To appear in Math. Nachr. MR 1484668
Reference: [5] O. Došlý J. Komenda: Conjugacy criteria and principal solutions of self-adjoint differential equations.Arch. Math. (Brno) 31 (1995), 217-238. MR 1368260
Reference: [6] F. Fiedler: Oscillation criteria for a special class of 2n-order ordinary differential equations.Math. Nachr. 131 (1987), 205-218. Zbl 0644.34024, MR 0908812, 10.1002/mana.19871310119
Reference: [7] F. Fiedler: About certain fourth-order ordinary differential operators-oscillation and discreteness of their spectrum.Math. Nachr. 142 (1989), 235-250. Zbl 0685.34033, MR 1017382, 10.1002/mana.19891420116
Reference: [8] I. M. Glazman: Direct Methods of Qualitative Analysis of Singular Differential Operators.Jerusalem, 1965.
Reference: [9] P. Hartman: Self-adjoint, non-oscillatory systems of ordinary, second order, linear differential equations.Duke J. Math. 24 (1956), 25-35. MR 0082591, 10.1215/S0012-7094-57-02405-5
Reference: [10] D. B. Hinton R. T. Lewis: Discrete spectra criteria for singular differential operators with middle terms.Math. Proc. Cambridge Philos. Soc. 77 (1975), 337-347. MR 0367358
Reference: [11] R. T. Lewis: The discreteness of the spectrum of self-adjoint, even order, differential operators.Proc. Amer. Mat. Soc. 42 (1974), 480-482. MR 0330608, 10.1090/S0002-9939-1974-0330608-8
Reference: [12] M. A. Naimark: Linear Differential Operators.Part II. Ungar, New York, 1968. Zbl 0227.34020
Reference: [13] W. T. Reid: Sturmian Theory for Ordinary Differential Equations.Springer-Verlag, New York, 1980. Zbl 0459.34001, MR 0606199
Reference: [14] R. L. Sternberg: Variational methods and nonoscillatory theorems for systems of differential equations.Duke J. Math. 19 (1952), 311-322. MR 0048668
Reference: [15] C. A. Swanson: Comparison and Oscillation Theory of Linear Differential Equations.Acad. Press, New York, 1968. Zbl 0191.09904, MR 0463570
Reference: [16] J. Weidmann: Linear Operators in Hilbert Spaces.Springer-Verlag, New York, 1980. Zbl 0434.47001, MR 0566954
.

Files

Files Size Format View
MathBohem_122-1997-2_6.pdf 1.251Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo