Title:
|
Magic powers of graphs (English) |
Author:
|
Trenkler, Marián |
Author:
|
Vetchý, Vladimír |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
122 |
Issue:
|
2 |
Year:
|
1997 |
Pages:
|
121-124 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Necessary and sufficient conditions for a graph $G$ that its power $G^i$, $i\geq2$, is a magic graph and one consequence are given. (English) |
Keyword:
|
magic graph |
Keyword:
|
power of graph |
Keyword:
|
factor of graph |
MSC:
|
05C78 |
idZBL:
|
Zbl 0889.05067 |
idMR:
|
MR1460941 |
DOI:
|
10.21136/MB.1997.125922 |
. |
Date available:
|
2009-09-24T21:23:46Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/125922 |
. |
Reference:
|
[1] G. R. T. Hendry: The multiplicity of 1-factors in the square of a graph.J. Graph Theory 8 (1984), 399-403. Zbl 0545.05050, MR 0754920, 10.1002/jgt.3190080308 |
Reference:
|
[2] A. M. Hobbs: Some hamiltonian results in powers of graphs.J. Res. Nat. Bur. Standards Sect. B 77 (1973), 1-10. Zbl 0262.05124, MR 0337688 |
Reference:
|
[3] R. H. Jeurissen: Magic graphs, a characterization.Europ. J. Combinatorics 9 (1988), 363-368. Zbl 0657.05065, MR 0950055, 10.1016/S0195-6698(88)80066-0 |
Reference:
|
[4] S. Jezný M. Trenkler: Characterization of magic graphs.Czechoslovak Math. J. 33 (1983), 435-438. MR 0718926 |
Reference:
|
[5] L. Nebeský: On 2-factors in squares of graphs.Czechoslovak Math. J. 29 (1979), 588-594. MR 0548222 |
Reference:
|
[6] J. Sedláček: Problem 27 in Theory of Graphs and Applications.Proc. Symp. Smolenice. 1963, pp. 163-164. |
. |