Previous |  Up |  Next

Article

Title: Extensions of the representation theorems of Riesz and Fréchet (English)
Author: Prandini, J. C.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 118
Issue: 3
Year: 1993
Pages: 297-312
Summary lang: English
.
Category: math
.
Summary: We present two types of representation theorems: one for linear continuous operators on space of Banach valued regulated functions of several real variables and the other for bilinear continuous operators on cartesian products of spaces of regulated functions of a real variable taking values on Banach spaces. We use generalizations of the notions of functions of bounded variation in the sense of Vitali and Fréchet and the Riemann-Stieltjes-Dushnik or interior integral. A few applications using geometry of Banach spaces are given. (English)
Keyword: Riesz type representation theorem
Keyword: Fréchet type representation theorem
Keyword: representation theorems
Keyword: linear continuous operators on spaces of Banach valued regulated functions of several real variables
Keyword: bilinear continuous operators on cartesian products
Keyword: functions of bounded variation
Keyword: interior integral
Keyword: geometry of Banach spaces
Keyword: spaces of regulated functions of a real variable taking values in Banach spaces
Keyword: regulated functions
MSC: 26B30
MSC: 46B99
MSC: 46E15
MSC: 46E40
MSC: 46G10
MSC: 47B38
idZBL: Zbl 0799.46046
idMR: MR1239124
DOI: 10.21136/MB.1993.125924
.
Date available: 2009-09-24T21:00:23Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125924
.
Reference: [1] C. S. Hönig: Volteгra-Stieltjes Integral Equations.Mathematical Studies 16, North Holland Pub. Comp., Amsterdam, 1975.
Reference: [2] M. Morse, W. Transue: A Calculus for Fréchet Variations.Journal of Indian Math. Soc. XIV (1950), 65-117. Zbl 0040.05801, MR 0039043
Reference: [3] M. Morse, W. Transue: The Fréchet variation in the small, sector limits, and left decompositions.Canadian Journal of Math. 2 (1950), 344-374. MR 0037340, 10.4153/CJM-1950-033-1
Reference: [4] G. C. Rocha-Filho: Integral de Riemann Vetorial e Geometria dos Espaços de Banach.doctoral thesis, IME-USP, 1979.
Reference: [5] J. A. Clarkson, C. R. Adams: On defìnitions of bounded variation for functions of two variables.Trans. Am. Math. Soc. 35 (1933), 824-854. MR 1501718, 10.1090/S0002-9947-1933-1501718-2
Reference: [6] M. Fréchet: Sur les fonctionnelles bilineaires.Trans. Amer. Math. Soc. (1915), 215-234. MR 1501010, 10.2307/1988990
Reference: [7] N. Dunford, J. T. Schwartz: Linear Operators.paгt I, p. 337, Interscience, 1967.
.

Files

Files Size Format View
MathBohem_118-1993-3_8.pdf 1.952Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo