Previous |  Up |  Next

Article

Title: Two solutions for a nonlinear Dirichlet problem with positive forcing (English)
Author: Matos, J.
Author: Sanchez, L.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 121
Issue: 1
Year: 1996
Pages: 41-54
Summary lang: English
.
Category: math
.
Summary: Given a semilinear elliptic boundary value problem having the zero solution and where the nonlinearity crosses the first eigenvalue, we perturb it by a positive forcing term; we show the existence of two solutions under certain conditions that can be weakened in the onedimensional case. (English)
Keyword: semilinear elliptic equations
Keyword: multiple solutions
Keyword: shooting method
Keyword: variational methods
MSC: 34B15
MSC: 35B05
MSC: 35J25
MSC: 35J65
idZBL: Zbl 0863.34020
idMR: MR1388173
DOI: 10.21136/MB.1996.125934
.
Date available: 2009-09-24T21:15:04Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125934
.
Reference: [1] A. Ambrosetti G. Prodi: On the inversion of some differential mappings with singularities between Banach spaces.Ann. Mat. Pura Appl. (4) 93 (1972), 231-247. MR 0320844, 10.1007/BF02412022
Reference: [2] H. Berestycki D. G. Figueiredo: Double resonance in semilinear elliptic problems.Comm. Partial Differential Equations, 6 (1) (1981), 91-120. MR 0597753, 10.1080/03605308108820172
Reference: [3] M. S. Berger E. Podolak: On the solutions of a nonlinear Dirichlet problem.Indiana Univ. Math. J. 24 (1975), 837-846. MR 0377274, 10.1512/iumj.1975.24.24066
Reference: [4] H. Brezis L. Nirenberg: $H^1$ versus $C^1$ local minimizers.C. R. Acad. Sci. Paris 317, Serie I (1993), 465-472. MR 1239032
Reference: [5] D. De Figueiredo: On the superlinear Ambrosetti-Prodi problem.Nonlinear Anal. 8 (1984), no. 6, 351-366. Zbl 0554.35045, MR 0746723
Reference: [6] G. Dinca L. Sanchez: Multiple solutions of boundary value problems: an elementary approach via the shooting method.Nonlinear Differential Equations Appl. 1 (1994), 163-178. MR 1273348, 10.1007/BF01193950
Reference: [7] J. V. A. Gongalves: On multiple solutions for a semilinear Dirichlet problem.Houston J. Math. 12 (1986), 43-53. MR 0855792
Reference: [8] J. P. Gossez P. Omari: Nonresonance with respect to the Fučík spectrum for the periodic solutions of second order ordinary differential equations.Nonlinear Anal. 14 (1990), no. 12, 1079-1104. MR 1059615, 10.1016/0362-546X(90)90069-S
Reference: [9] H. Kaper M. K. Kwong: On two conjectures concerning the multiplicity result of solutions of a Dirichlet problem.Siam J. Math. Anal. 23 (1992), 571-578. MR 1158822, 10.1137/0523029
Reference: [10] J. L. Kazdan F. Warner: Remarks on some quasilinear elliptic equations.Comm. Pure Appl. Math. 28 (1975), 567-597. MR 0477445, 10.1002/cpa.3160280502
Reference: [11] A. C. Lazer P. J. McKenna: On a conjecture related to the number of solutions of a nonlinear Dirichlet problem.Proc. Roy. Soc. Edinburgh Sect. A 95 (1983), 275-283. MR 0726879
Reference: [12] A. Marino A. M. Micheletti A. Pistoia: Some variational results on semilinear problems with asymptotically nonsymmetric behaviour.Quaderno Sc. Normale Superiore Nonlinear Analysis, A Tribute in honour of G. Prodi. 1991, pp. 243-256. MR 1205387
Reference: [13] J. Mawhin: Point fixes, points critiques et problèmes aux limites.Sem. Math. Sup. 92. Presses Univ. Montreal, 1985. MR 0789982
Reference: [14] P. Rabinowitz: Minimax methods in critical point theory and applications to differential equations.CBMS Reg. Conf. 65. Amer. Math. Soc, Providence, R.I., 1986. MR 0845785
Reference: [15] F. Zanolin: Continuation theorems for the periodic problem via the translation operator.Preprint, 1993. MR 1490010
Reference: [16] E. Zeidler: Nonlinear Functional Analysis and its Applications I.Springer-Verlag, New York, 1985. MR 0816732
Reference: [17] B. Zinner: Multiplicity of solutions for two point boundary value problems with jumping nonlinearities.J. Math. Anal. Appl. 176 (1993), 282-291. MR 1222169
.

Files

Files Size Format View
MathBohem_121-1996-1_6.pdf 744.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo