Previous |  Up |  Next

Article

Title: On centrally symmetric graphs (English)
Author: Stern, Manfred
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 121
Issue: 1
Year: 1996
Pages: 25-28
Summary lang: English
.
Category: math
.
Summary: In this note we extend results on the covering graphs of modular lattices (Zelinka) and semimodular lattices (Gedeonova, Duffus and Rival) to the covering graph of certain graded lattices. (English)
Keyword: covering graph
Keyword: symmetric graph
Keyword: centrally symmetric lattice
Keyword: graded lattice
Keyword: strong lattice
Keyword: semimodular lattice
MSC: 05C75
MSC: 05C99
MSC: 06B05
MSC: 06C10
MSC: 06E05
idZBL: Zbl 0863.06009
idMR: MR1388170
DOI: 10.21136/MB.1996.125944
.
Date available: 2009-09-24T21:14:38Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125944
.
Reference: [1] P. Crawley, R. P. Dilworth: Algebraic Theory of Lattices.Prentice Hall, Englewood Cliffs, New Jersey, 1973. Zbl 0494.06001
Reference: [2] D. Duffus, I. Rival: Path length in the covering graph of a lattice.Discrete Math. 19 (1977), 139-158. Zbl 0372.06005, MR 0543829, 10.1016/0012-365X(77)90029-2
Reference: [3] U. Faigle: Geometries on partially ordered sets.J. Combin. Theory Ser. B 28 (1977), 26-51. MR 0565509, 10.1016/0095-8956(80)90054-4
Reference: [4] E. Gedeonová: Lattices whose covering graphs are S-graphs.Colloq. Math. Soc. János Bolyai 33 (1980), 407-435. MR 0724274
Reference: [5] E. Gedeonová: Lattices with centrally symmetric covering graphs.Proc. Klagenfurt Conf. June 10-13, 1982, Contributions to General Algebra 2. Verlag Hölder-Pichler-Tempsky, Wien, 1983, pp. 107-113. MR 0721649
Reference: [6] G. Grätzer: General Lattice Theory.Birkhäuser Verlag, Basel, 1978. MR 0504338
Reference: [7] A. Kotzig: Centrally symmetric graphs.Czechoslovak Math. J. 18 (1968), 606-615. (In Russian.) MR 0237376
Reference: [8] J. P. S. Kung: Matchings and Radon transforms in lattices, I. Consistent lattices.Order 2, 105-112. Zbl 0582.06008, MR 0815856, 10.1007/BF00334848
Reference: [9] K. Reuter: The Kurosh-Ore exchange property.Acta Math. Hung. 53, 119-127. Zbl 0675.06003, MR 0987044, 10.1007/BF02170062
Reference: [10] M. Stern: Semimodular Lattices.B.G.Teubner Verlagsgesellschaft, Stuttgart und Leipzig, 1991. Zbl 0743.06008, MR 1164868
Reference: [11] M. Stern: Dually atomistic lattices.Discrete Math. 93 (1991), 97-100. Zbl 0759.06006, MR 1141266, 10.1016/0012-365X(91)90220-V
Reference: [12] B. Zelinka: Centrally symmetric Hasse diagrams of finite modular lattices.Czechoslovak Math. J. 20 (1970), 81-83. Zbl 0194.32601, MR 0255441
.

Files

Files Size Format View
MathBohem_121-1996-1_3.pdf 321.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo