Previous |  Up |  Next

Article

Title: On special Riemannian $3$-manifolds with distinct constant Ricci eigenvalues (English)
Author: Kowalski, Oldřich
Author: Vlášek, Zdeněk
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 124
Issue: 1
Year: 1999
Pages: 45-66
Summary lang: English
.
Category: math
.
Summary: The first author and F. Prufer gave an explicit classification of all Riemannian 3-manifolds with distinct constant Ricci eigenvalues and satisfying additional geometrical conditions. The aim of the present paper is to get the same classification under weaker geometrical conditions. (English)
Keyword: Riemannian manifold
Keyword: constant principal Ricci curvatures
MSC: 53B20
MSC: 53C20
MSC: 53C21
MSC: 53C25
MSC: 53C30
idZBL: Zbl 0934.53027
idMR: MR1687417
DOI: 10.21136/MB.1999.125981
.
Date available: 2009-09-24T21:34:59Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125981
.
Reference: [1] E. Boeckx O. Kowalski. L. Vanhecke: Riemannian Manifolds of Conullity Two.World Scientific Publishers. 1990 MR 1462887
Reference: [2] P. Bueken: Three-dimensional Riemannian manifolds with constant principal Ricci curvatures $\rho_1 = \rho_2 \neq \rho_3$.J. Math Phys. 37 (1990), 4062-4075. MR 1400834, 10.1063/1.531626
Reference: [3] O. Kowalski: A classification of Riemannian 3-manifolds with constant principal Ricci curvatures $\rho_1 = \rho_2 \neq \rho_3$.Nagoya Math. J. 132 (1993), 1-36. MR 1253692
Reference: [4] O. Kowalski: Nonhomogeneous Riemannian 3-manifolds with distinct constant Ricci eigenvalues.Comment. Math. Univ. Carotin. 34 (1993), 451-457. Zbl 0789.53024, MR 1243077
Reference: [5] O. Kowalski F. Prüfer: On Riemannian 3-manifolds with distinct constant Ricci eigenvalues.Math. Ann. 300 (1994), 17-28. MR 1289828, 10.1007/BF01450473
Reference: [6] O. Kowalski F. Prüfer: A classification of special Riemannian 3-manifolds with distinct constant Ricci eigenvalues.Z. Anal. Anwendungen 14 (1995), 43-58. MR 1327491, 10.4171/ZAA/662
Reference: [7] O. Kowalski M. Sekizawa: Local isometry classes of Riemannian 3-manifolds with constant Ricci eigenvalues $\rho_1 = \rho_2 \neq \rho_3 > 0$.Arch. Math. (Brno) 32 (1996), 137-145. MR 1407345
Reference: [8] O. Kowalski Z. Vlášek: Classification of Riemannian 3-manifolds with distinct constant principal Ricci curvatures.Bull. Belg, Math. Soc. Simon Stevin 5 (1998), 59-68. MR 1610731, 10.36045/bbms/1103408965
Reference: [9] I. M. Singer: Infinitesimally homogeneous spaces.Comm. Pure Appl. Math. 13 (1990), 685-697. MR 0131248
Reference: [10] A. Spiro F. Tricerri: 3-diinensioual Riemannian metrics with prescribed Ricci principal curvatures.J. Math. Pures. Appl. 74 (1995), 253-271. MR 1327884
Reference: [11] K. Yamato: A characterization of locally homogeneous Riemannian manifolds of dimension 3.Nagoya Math. J. 123 (1991), 77-90. MR 1126183, 10.1017/S0027763000003652
.

Files

Files Size Format View
MathBohem_124-1999-1_5.pdf 3.251Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo