Previous |  Up |  Next

Article

Title: Decoupling normalizing transformations and local stabilization of nonlinear systems (English)
Author: Nikitin, S.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 121
Issue: 3
Year: 1996
Pages: 225-248
Summary lang: English
.
Category: math
.
Summary: The existence of the normalizing transformation completely decoupling the stable dynamic from the center manifold dynamic is proved. A numerical procedure for the calculation of the asymptotic series for the decoupling normalizing transformation is proposed. The developed method is especially important for the perturbation theory of center manifold and, in particular, for the local stabilization theory. In the paper some sufficient conditions for local stabilization are given. (English)
Keyword: nonlinear system
Keyword: stabilization
Keyword: center manifold
Keyword: normalizing transformation
Keyword: smooth feedback
MSC: 34A34
MSC: 34C20
MSC: 34C30
MSC: 34D05
MSC: 34D35
MSC: 34D99
MSC: 93C10
MSC: 93D15
idZBL: Zbl 0863.34013
idMR: MR1419877
DOI: 10.21136/MB.1996.125988
.
Date available: 2009-09-24T21:19:00Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125988
.
Reference: [1] D. Aeyels: Stabilization of a class of nonlinear systems by a smooth feedback contгol.Systems Contгol Lett. 5 (1985), 289-294. MR 0791542
Reference: [2] A. Andreini A. Baccietti G. Stefani: Global stabilizability of homogeneous vector fields of odd degree.Systems Control Lett. 10 (1988), 251-256. MR 0936621, 10.1016/0167-6911(88)90014-X
Reference: [3] S. Behtash S. Sastry: Stabilization of nonlinear systems with uncontrollable lineaгization.IEEE Tгans. Automat. Control 33 (1988), 585-590. MR 0940781, 10.1109/9.1259
Reference: [4] J. Carr: Applications of centгe manifold theoгy.Springer, New York, 1981. MR 0635782
Reference: [5] E. Coddington, N. Levinson: Theoгy of ordinary differential equations.McGraw-Hill, New York, 1955. MR 0069338
Reference: [6] M. C. Joshi, R. K. Bose: Some topics in nonlineaг functional analysis.John Wiley and Sons, New York, 1985. MR 0806351
Reference: [7] V. Jurdjevic J. Quin: Controllability and stabilizability.J. Diffeгential Equations 28 (1978), 381-389. MR 0494275, 10.1016/0022-0396(78)90135-3
Reference: [8] A. Kelley: The stable, centeг-stable, centeг, centeг-unstable, unstable manifolds.J. Differential Equations 3 (1967), 546-570. MR 0221044, 10.1016/0022-0396(67)90016-2
Reference: [9] N. Kalouptsidis J. Tsinias: Stability impгovement of nonlinear systems by feedback.IEEE Trans. Automat. Control 29 (1984), 365-367. MR 0742368, 10.1109/TAC.1984.1103518
Reference: [10] E. P. Ryan N. J. Buckingham: On asymptotically stabilizing feedback control of bilinear systems.IEEE Trans. Automat. Control 28 (1983), 863-864. 10.1109/TAC.1983.1103323
Reference: [11] V. I. Zubov: Methods of A.M. Liapunov and their applications.Noordhoff, 1964. MR 0179428
.

Files

Files Size Format View
MathBohem_121-1996-3_1.pdf 1.179Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo