Previous |  Up |  Next

Article

Title: Higher-order differential systems and a regularization operator (English)
Author: Calábek, Pavel
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 124
Issue: 4
Year: 1999
Pages: 337-349
Summary lang: English
.
Category: math
.
Summary: Sufficient conditions for the existence of solutions to boundary value problems with a Caratheodory right hand side for ordinary differential systems are established by means of continuous approximations. (English)
Keyword: Carathéodory functions
Keyword: Arzelà-Ascoli theorem
Keyword: Lebesgue theorem
MSC: 34A45
MSC: 34B10
MSC: 34B15
idZBL: Zbl 0937.34015
idMR: MR1722872
DOI: 10.21136/MB.1999.125996
.
Date available: 2009-09-24T21:38:47Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/125996
.
Reference: [1] P. Calábek: A four-point problem for second-order differential systems.Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 114, 7-15. MR 1385740
Reference: [2] P. Calábek: Second-order differentiai systems and a regularization operator.Ann. Math. Sil. 10, 67-78. MR 1399611
Reference: [3] S. Fučík O. John A. Kufner: Function Spaces.Academia, Prague, 1977. MR 0482102
Reference: [4] K. Yosida: Functional Analysis.6-th edition, Springer-Verlag, BerІin, 1980. Zbl 0435.46002, MR 0617913
Reference: [5] A. Granas R. Guenther J. Lee: Some existence principies in the Carathéodory theory of nonlinear differential systems.J. Math. Pures Appl. 70 (1991), 153-196. MR 1103033
Reference: [6] I. T. Kiguradze: Boundary value problems for systems of ordinary differential equations.Itogi nauki i tehniki, ser. Sovr. problemy matematiki. Nov. dostizhenija. t. 30, VINITI, Moskva, 1987, pp. 3-103. (In Russian.) Zbl 0782.34025, MR 0925829
.

Files

Files Size Format View
MathBohem_124-1999-4_1.pdf 2.073Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo