Previous |  Up |  Next


almost periodic function; Fourier coefficient; Fourier exponent; spectrum of almost periodic function; almost periodic system of differential equations; formal almost periodic solution; distance of two spectra; time lag
This paper generalizes earlier author's results where the linear and quasilinear equations with constant coefficients were treated. Here the method of limit passages and a fixed-point theorem is used for the linear and quasilinear equations with almost periodic coefficients.
[1] Amerio L., Prouse G.: Almost Periodic Functious and Functional Equations. N.Y. Van Nostrand Reinhold Company, 1971. MR 0275061
[2] Bohr H.: Zur Theorie der fastperiodischen Funktionen. Acta Math. 45 (1925), 29-127; 46 (1925), 101-214; 47 (1926), 237-281. MR 1555216
[3] Bochner S.: Beiträge zur Theorie der fastperiodeschen Funktionen. Math. Ann. 96 (1927), 119-147. DOI 10.1007/BF01209156 | MR 1512308
[4] Bochner S.: Abstrakte fastperiodische Funktionen. Acta Math. 61 (1933), 149-184. DOI 10.1007/BF02547790 | MR 1555374 | Zbl 0007.11201
[5] Fink A. M.: Almost Periodic Differential Equations. Lecture Notes in Mathematics, Springer, New York, 1978. MR 0460799
[6] Fischer A.: Existence of almost periodic solution of systems of linear and quasilinear differential equations with time lag. Czechoslovak Math J. 106 (1981). MR 0629724
[7] Levitan B. M.: Almost Periodic Functions. GIZTL, Moskva, 1953. (In Russian.) MR 0060629 | Zbl 1222.42002
[8] Levitan B. M., Žikov V. V.: Almost Periodic Functions and Differential Equations. IMU, Moskva, 1978. (In Russian.) MR 0509035
[9] Šimanov S. N: Almost periodic functions and differential equations with tíme lag. VUZ SSSR, Matematika 4(5) (1959). (In Russian.)
Partner of
EuDML logo