Previous |  Up |  Next

Article

Keywords:
chaos in the sense of Li and Yorke; maximal scrambled sets; topological entropy; chaotic functions; scrambled sets
Summary:
In this note we characterize chaotic functions (in the sense of Li and Yorke) with topological entropy zero in terms of the structure of their maximal scrambled sets. In the interim a description of all maximal scrambled sets of these functions is also found.
References:
[1] R. L. Alder A. G. Konheim, M. H. McAndrew: Topological entropy. Trans. Amer. Mat. Soc. 114 (1965), 309-319. DOI 10.1090/S0002-9947-1965-0175106-9 | MR 0175106
[2] V. V. Fedorenko A. N. Šarkovskii, J. Smítal: Characterizations of weakly chaotic maps of the interval. Proc. Amer. Math. Soc. 110 (1990), 141-148. DOI 10.1090/S0002-9939-1990-1017846-5 | MR 1017846
[3] V. V. Fedorenko, J. Smítal: Maps of the interval Ljapunov stable on the set of nonwandering points. Acta Math. Univ. Comenian. (N. S.) 60 (1991), 11-14. MR 1120591
[4] K. Janková, J. Smítal: A characterization of chaos. Bull. Austral. Mat. Soc. 34 (1986), 283-292. DOI 10.1017/S0004972700010157 | MR 0854575
[5] V. Jiménez López: Is Li and Yorke's definition a good tool to measure chaos?. PhD Thesis Universidad de Murcia 1992.
[6] M. Kuchta, J. Smítal: Two point scrambled set implies chaos. Proceedings of the European Conference on Iteration Theory (ECIT 87), Caldes de Malavella, Spain, 1987. World Sci. Publishing, Singapore, 1989, pp. 427-430. MR 1085314
[7] T. Y. Li, J. A. Yorke: Period three implies chaos. Amer. Math. Monthly 82 (1975), 985-992. DOI 10.2307/2318254 | MR 0385028 | Zbl 0351.92021
[8] C. Preston: Iterates of piecewise monotone mappings on an interval. Lecture Notes in Mathematics 1347. Springer, Berlin, 1988. MR 0969131 | Zbl 0684.58002
[9] A. N. Šarkovskii: On cycles and the structure of a continuous map. Ukrain. Mat. Ž. 17 (1965), 104-111. (In Russian.) MR 0186757
[10] J. Smítal: Chaotic functions with zero topological entropy. Trans. Amer. Mat. Soc. 297 (1986), 269-282. DOI 10.2307/2000468 | MR 0849479
Partner of
EuDML logo