Previous |  Up |  Next


chaos in the sense of Li and Yorke; maximal scrambled sets; topological entropy; chaotic functions; scrambled sets
In this note we characterize chaotic functions (in the sense of Li and Yorke) with topological entropy zero in terms of the structure of their maximal scrambled sets. In the interim a description of all maximal scrambled sets of these functions is also found.
[1] R. L. Alder A. G. Konheim, M. H. McAndrew: Topological entropy. Trans. Amer. Mat. Soc. 114 (1965), 309-319. DOI 10.1090/S0002-9947-1965-0175106-9 | MR 0175106
[2] V. V. Fedorenko A. N. Šarkovskii, J. Smítal: Characterizations of weakly chaotic maps of the interval. Proc. Amer. Math. Soc. 110 (1990), 141-148. DOI 10.1090/S0002-9939-1990-1017846-5 | MR 1017846
[3] V. V. Fedorenko, J. Smítal: Maps of the interval Ljapunov stable on the set of nonwandering points. Acta Math. Univ. Comenian. (N. S.) 60 (1991), 11-14. MR 1120591
[4] K. Janková, J. Smítal: A characterization of chaos. Bull. Austral. Mat. Soc. 34 (1986), 283-292. DOI 10.1017/S0004972700010157 | MR 0854575
[5] V. Jiménez López: Is Li and Yorke's definition a good tool to measure chaos?. PhD Thesis Universidad de Murcia 1992.
[6] M. Kuchta, J. Smítal: Two point scrambled set implies chaos. Proceedings of the European Conference on Iteration Theory (ECIT 87), Caldes de Malavella, Spain, 1987. World Sci. Publishing, Singapore, 1989, pp. 427-430. MR 1085314
[7] T. Y. Li, J. A. Yorke: Period three implies chaos. Amer. Math. Monthly 82 (1975), 985-992. DOI 10.2307/2318254 | MR 0385028 | Zbl 0351.92021
[8] C. Preston: Iterates of piecewise monotone mappings on an interval. Lecture Notes in Mathematics 1347. Springer, Berlin, 1988. MR 0969131 | Zbl 0684.58002
[9] A. N. Šarkovskii: On cycles and the structure of a continuous map. Ukrain. Mat. Ž. 17 (1965), 104-111. (In Russian.) MR 0186757
[10] J. Smítal: Chaotic functions with zero topological entropy. Trans. Amer. Mat. Soc. 297 (1986), 269-282. DOI 10.2307/2000468 | MR 0849479
Partner of
EuDML logo