Previous |  Up |  Next


weak bi-Lindelöf number; bispread; bi-quasi-uniform weight; bi-Lindelöf number
In this paper, bitopological counterparts of the cardinal functions Lindelof number, weak Lindelof number and spread are introduced and studied. Some basic relations between these functions and the functions in [3] are given.
[1] L. M. Brown: On extensions of bitopological spaces. Coiloquia Mathematica Societatis Janos Bolyai, 23, Topology, Budapest, 1978.
[2] L. M. Brown: Dual covering theory, confluence structures and the lattice of bicontinuous functions. PҺD Thesis Univ. of Glasgow, 1980.
[3] M. Diker: The counterparts of some cardinal functions in bitopoiogical spaces I. Mathematica Bohemica 120 (1995), 237-245. MR 1369683
[4] T. E. Gаntner R. C. Steinlаge: Characterization of quasi uniformities. J. London Math. Soc. Ser. 5 11 (1972), 48-52.
[5] I. Juhász: Caгdinal functions in topology. Math. Center Tracts No. 34, Math. Centrum, Amsterdam, 1971. MR 0340021
[6] I. Juhász: Caгdinal functions in topology ten years later. Math. Center Tracts No. 123, Math. Centrum, Amsterdam, 1980. MR 0576927
[7] R. D. Kopperman P. R. Meyer: Cardinal invariants of bitopological spaces. Časopis pro pěstování matematiky 114 (1989), no. 4, 374-380. MR 1027233
Partner of
EuDML logo