Previous |  Up |  Next

Article

Title: The fixed point theorem and the boundedness of solutions of differential equations in the Banach space (English)
Author: Tumajer, František
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 118
Issue: 1
Year: 1993
Pages: 1-9
Summary lang: English
.
Category: math
.
Summary: The properties of solutions of the nonlinear differential equation $x'=A(s)x+f(s,x)$ in a Banach space and of the special case of the homogeneous linear differential equation $x'=A(s)x$ are studied. Theorems and conditions guaranteeing boundedness of the solution of the nonlinear equation are given on the assumption that the solutions of the linear homogeneous equation have certain properties. (English)
Keyword: differential equation
Keyword: Banach space
Keyword: existence
Keyword: uniqueness
Keyword: boundedness
Keyword: bounded solution
Keyword: derivative of the norm of a linear mapping
Keyword: fixed point
MSC: 34C11
MSC: 34G20
MSC: 47H10
MSC: 47H15
MSC: 47N20
idZBL: Zbl 0776.34052
idMR: MR1213827
DOI: 10.21136/MB.1993.126016
.
Date available: 2009-09-24T20:56:22Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126016
.
Reference: [1] J. L. Massera J. J. Schäffler: Linear differential equations and function spaces.Academic press, New York and London, 1966. MR 0212324
Reference: [2] F. Tumajer: The derivative of the norm of the linear mapping and its application to differential equations.Aplikace matematiky 57 (1992), 193-200. MR 1157455
Reference: [3] M. Greguš M. Švec V. Šeda: Ordinary differential equations.Praha, 1985. (In Slovak.)
Reference: [4] S. G. Krein M. I. Khazan: Differential equations in a Banach space.Mathem. analysis Vol. 21, Itogi Nauki i Tekhniky, Akad. Nauk SSSR, Vsesojuz. Inst. Nauki i Tekh, Informatsii, Moscow, 1983, pp. 130-264. MR 0736523
Reference: [5] V. V. Vasil'ev S. G. Krejn S. I. Piskarev: Pologruppy operatorov, kosinus operator-funkcii i linejnye differencial'nye uravnenija.Itogi Nauki i Tekhniki, Matematiceskij analiz T. 28, Moskva, 1990, pp. 87-203.
Reference: [6] B. Rzepecki: An existence theorem for ordinary differential equations in Banach spaces.Bull. Austral. Soc. 30 no. 3 (1984), 449-456. Zbl 0561.34042, MR 0766802, 10.1017/S0004972700002161
Reference: [7] B. Rzepecki: An existence theorem for bounded solutions of differential equations in Banach spaces.Rend. Sem. Mat. Univ. Padova 13 (1985), 89-94. Zbl 0586.34052, MR 0799899
.

Files

Files Size Format View
MathBohem_118-1993-1_1.pdf 1.010Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo