Previous |  Up |  Next

Article

Title: Connections induced by $(1,1)$-tensor fields on cotangent bundles (English)
Author: Dekrét, Anton
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 123
Issue: 3
Year: 1998
Pages: 317-331
Summary lang: English
.
Category: math
.
Summary: On cotangent bundles the Liouville field, the Liouville 1-form $\varepsilon$ and the canonical symplectic structure d$\varepsilon$ exist. In this paper interactions between these objects and ${(1,1)}$-tensor fields on cotangent bundles are studied. Properties of the connections induced by the above structures are investigated. (English)
Keyword: connection
Keyword: almost complex structure
Keyword: tensor field
Keyword: Liouville field
Keyword: canonical symplectic structure
MSC: 53B05
MSC: 53C05
MSC: 53D05
MSC: 58A20
MSC: 58F05
MSC: 70H35
idZBL: Zbl 0934.53020
idMR: MR1645458
DOI: 10.21136/MB.1998.126068
.
Date available: 2009-09-24T21:32:42Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126068
.
Reference: [1] Cabras A., Kolář I.: Special tangent valued forms and the Frölicher-Nijenhuis bracket.Arch. Math. (Brno) 29 (1993), 71-82. Zbl 0801.53014, MR 1242630
Reference: [2] Dekrét A.: On almost complex structures on fibre bundles.Acta Univ. M. Belii Math. 3 (1995), 3-8. Zbl 0856.53026, MR 1409884
Reference: [3] Doupovec M., Kurek J.: Liftings of tensor fields to the cotangent bundle.Proc. Conf. Diff. Geometry Brno 1995. Masaryk University, Brno, 1996, p. 141-150. MR 1406334
Reference: [4] Janyška J.: Remarks on the Nijenhuis tensor and almost complex connections.Arch. Math. (Brno) 26 (1990), 229-240. Zbl 0738.53014, MR 1188975
Reference: [5] Klein J.: On variational second order differential equations Polynomial case.Proc. Conf. Diff. Geometry and its Applications 1992. Silesian University, Opava, 1993, p. 449-459. MR 1255561
Reference: [6] Kolář I., Michor P. W., Slovák J.: Natural Operations in Differential Geometry.Springer-Verlag, Berlin, 1993. MR 1202431
Reference: [7] Yano K.: Differential Geometry on Complex and Almost Complex Spaces.Pergamon Press, New York, 1965. Zbl 0127.12405, MR 0187181
Reference: [8] Yano K., Ishihara S.: Tangent and Cotangent Bundles.M. Dekker Inc., New York, 1973. Zbl 0262.53024, MR 0350650
.

Files

Files Size Format View
MathBohem_123-1998-3_9.pdf 784.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo