Title:
|
Asymptotic behaviour of solutions of some linear delay differential equations (English) |
Author:
|
Čermák, Jan |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
125 |
Issue:
|
3 |
Year:
|
2000 |
Pages:
|
355-364 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we investigate the asymptotic properties of all solutions of the delay differential equation
y'(x)=a(x)y(\tau(x))+b(x)y(x),\qquad x\in I=[x_0,\infty).
We set up conditions under which every solution of this equation can be represented in terms of a solution of the differential equation
z'(x)=b(x)z(x),\qquad x\in I
and a solution of the functional equation
|a(x)|\varphi(\tau(x))=|b(x)|\varphi(x),\qquad x\in I. (English) |
Keyword:
|
asymptotic behaviour |
Keyword:
|
differential equation |
Keyword:
|
delayed argument |
Keyword:
|
functional equation |
MSC:
|
34K15 |
MSC:
|
34K25 |
MSC:
|
39B05 |
MSC:
|
39B22 |
MSC:
|
39B99 |
idZBL:
|
Zbl 0972.34066 |
idMR:
|
MR1790126 |
DOI:
|
10.21136/MB.2000.126125 |
. |
Date available:
|
2009-09-24T21:44:21Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/126125 |
. |
Reference:
|
[1] F. V. Atkinson J. R. Haddock: Criteria for asymptotic constancy of solutions of functional differential equations.J. Math. Anal. Appl. 91 (1983), 410-423. MR 0690880, 10.1016/0022-247X(83)90161-0 |
Reference:
|
[2] N. G. de Bruijn: The asymptotically periodic behavior of the solutions of some linear functional equations.Amer. J. Math. 71 (1949), 313-330. Zbl 0033.27002, MR 0029065, 10.2307/2372246 |
Reference:
|
[3] J. Čermák: On the asymptotic behaviour of solutions of some functional-differential equations.Math. Slovaca 48 (1998), 187-212. MR 1647674 |
Reference:
|
[4] J. Čermák: The asymptotic bounds of solutions of linear delay systems.J. Math. Anal. Appl. 225 (1998), 373-388. MR 1644331, 10.1006/jmaa.1998.6018 |
Reference:
|
[5] J. Diblík: Asymptotic representation of solutions of equation $\dot{y} (t) = \beta (t)[y(t) - y(t - \tau (t))].J. Math. Anal Appl 217 (1998), 200-215. MR 1492085, 10.1006/jmaa.1997.5709 |
Reference:
|
[6] I. Győri M. Pituk: Comparison theorems and asymptotic equilibrium for delay differential and difference equations.Dynam. Systems Appl. 5 (1996), 277-302. MR 1396192 |
Reference:
|
[7] J. K. Hale S. M. Verduyn Lunel: Functional Differential Equations.Springer-Verlag, New York, 1993. |
Reference:
|
[8] M. L. Heard: A change of variables for functional differential equations.J. Differential Equations 18 (1975), 1-10. Zbl 0318.34069, MR 0387766, 10.1016/0022-0396(75)90076-5 |
Reference:
|
[9] T. Kato J. B. McLeod: The functional differential equation $y'(x) = a y(\lambda x) + b y(x).Bull. Amer. Math. Soc. 77 (1971), 891-937. MR 0283338 |
Reference:
|
[10] M. Kuczma B. Choczewski R. Ger: Iterative Functional Equations.Encyclopedia of Mathematics and Its Applications, Cambridge Univ. Press, Cambridge, England, 1990. MR 1067720 |
Reference:
|
[11] F. Neuman: On transformations of differential equations and systems with deviating argument.Czechoslovak Math, J. 31 (1981), 87-90. Zbl 0463.34051, MR 0604115 |
Reference:
|
[12] S. N. Zhang: Asymptotic behaviour and structure of solutions for equation $\dot{x} (t) = p(t)[x(t) - x(t - 1)]$.J. Anhui Normal Univ. Nat. Sci. 2 (1981), 11-21. (In Chinese.) |
. |