Previous |  Up |  Next

Article

Title: Convex isomorphisms of directed multilattices (English)
Author: Jakubík, Ján
Author: Csontóová, Mária
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 118
Issue: 4
Year: 1993
Pages: 359-378
Summary lang: English
.
Category: math
.
Summary: By applying the solution of the internal direct product decomposition we investigate the relations between convex isomorphisms and direct product decompositions of directed multilattices. (English)
Keyword: direct product decomposition
Keyword: convex isomorphisms
Keyword: directed multilattices
Keyword: directly indecomposable lattices
Keyword: internal direct product decomposition
Keyword: directed set
Keyword: multilattice
MSC: 06A06
MSC: 06A99
MSC: 06B99
idZBL: Zbl 0802.06008
idMR: MR1251882
DOI: 10.21136/MB.1993.126157
.
Date available: 2009-09-24T21:01:21Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126157
.
Reference: [1] M. Benado: Sur la théorie de la divisibilité.Acad. R. P. Romine, Bul. Sti. Sect. Mat. Fiz. 6 (1954), 263-270. Zbl 0057.25301, MR 0067089
Reference: [2] C. C. Chen M. K. Koh: On the lattice of convex sublattices of a finite lattice.Nanta Math. 5 (1972), 93-95. MR 0351934
Reference: [3] J. Hashimoto: On direct product decompositions of partially ordered sets.Annals of Math. 54 (1951), 315-318. MR 0043067, 10.2307/1969532
Reference: [4] J. Jakubík M. Kolibiar: On some properties of pairs of lattices.Czechoslov. Math. J. 4 (1954), 1-27. (In Russian.) MR 0065529
Reference: [5] M. Kolibiar: Intervals, convex sublattices and subdirect representations of lattices.Universal algebra and applications, Banach Center Publications, Vol. 9, Warszawa, 1980, pp. 335-339. MR 0738826, 10.4064/-9-1-335-339
Reference: [6] M. Kolibiar J. Lihová: Convex automorphisms of a lattice.Math. Slovaca, to appear. MR 1248975
Reference: [7] A. G. Kurosh: Group Theory.Third edition, Moskva, 1967. (In Russian.) Zbl 0189.30801
Reference: [8] V. I. Marmazeev: The lattice of convex sublattices of a lattice.Ordered sets and lattices No. 9, Saratov. Gos. Univ., Saratov, 1986, pp. 50-58. (In Russian.) Zbl 0711.06005, MR 0957970
Reference: [9] V. I. Marmazeev: A group of automorphisms of the lattice of convex sublattices of a lattice.Vestsi Akad. Navuk BSSR, Ser. fiz. mat. navuk (1988), no. 6, 110-112. (In Russian, English summary.) MR 0984119
.

Files

Files Size Format View
MathBohem_118-1993-4_3.pdf 2.199Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo