Previous |  Up |  Next

Article

Title: Bochner product integration (English)
Author: Schwabik, Štefan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 119
Issue: 3
Year: 1994
Pages: 305-335
Summary lang: English
.
Category: math
.
Summary: A new definition of the product integral is given. The definition is based on a procedure which is analogous to the sum definition of the Bochner integral given by J. Kurzweil and E.J. McShane. The new definition is shown to be equivalent to the seemingly verey different one given by J.D. Dollard and C.N. Friedman in [1] and [2]. (English)
Keyword: Kurzweil-Henstock integral
Keyword: Bochner integral
Keyword: product integral
Keyword: Bochner product integral
MSC: 26A42
MSC: 28B05
idZBL: Zbl 0830.28006
idMR: MR1305532
DOI: 10.21136/MB.1994.126162
.
Date available: 2009-09-24T21:06:17Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126162
.
Reference: [1] J. D. Dollard C.N. Friedman: Product Integration with Applications to Differential Equations.Addison-Wesley Publ. Company, Reading, Massachusetts, 1979. MR 0552941
Reference: [2] J. D. Dollard C.N. Friedman: On strong product integration.J. Func. Anal. 28 (1978), 309-354. MR 0492656, 10.1016/0022-1236(78)90091-5
Reference: [3] N. Dunford J.T. Schwartz: Linear Operators I..Interscience Publishers, New York, London, 1958. MR 0117523
Reference: [4] R. D. Gill S. Johansen: A survey of product-integration with a view toward application in survival analysis.Annals of Statistics 18 (1990), no. 4, 1501-1555. MR 1074422, 10.1214/aos/1176347865
Reference: [5] R. Henstock: Lectures on the Theory of Integration.World Scientific, Singapore, 1988. Zbl 0668.28001, MR 0963249
Reference: [6] R. Henstock: The General Theory of Integration.Clarendon Press, Oxfoгd, 1991. Zbl 0745.26006, MR 1134656
Reference: [7] E. Hille R. S. Phillips: Functional Analysis and Semi-groups.American Mathematical Society, Providence, 1957. MR 0089373
Reference: [8] J. Jarník J. Kurzweil: Perron integral, Perron product integral and ordinary linear differential equations.EQUADIFF 6, Lecture Notes in Mathematics 1192, Springer, Berlin (1986), 149-154. MR 0877117
Reference: [9] J. Jarník J. Kurzweil: A general form of the product integral and linear ordinary differential equations.Czech. Math. Јournal 37 (1987), 642-659. MR 0913996
Reference: [10] J. Kurzweil: Nichtabsolut konvergente Integrale.BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1980. Zbl 0441.28001, MR 0597703
Reference: [11] J. Mawhin: Analyse. Fondements,techniques,évolution.De Boeck-Wesmael, Bruxelles, 1992. Zbl 0759.26004, MR 1190926
Reference: [12] E. J. McShane: Unified Integration.Academic Press, New York, London, 1983. Zbl 0551.28001, MR 0740710
Reference: [13] L. Schlesinger: Vorlesungen über lineare Differentialgleichungen.Teubner, Leipzig, 1908.
Reference: [14] L. Schlesinger: Neue Grundlagen für einen Infinitesimalkalkul der Matrizen.Math. Zeitschrift 33 (1931), 33-61. Zbl 0001.01503, 10.1007/BF01174342
Reference: [15] G. Schmidt: On multiplicative Lebesgue integration and families of evolution operators.Math. Scand. 29 (1971), 113-133. Zbl 0232.47024, MR 0352398, 10.7146/math.scand.a-11039
Reference: [16] Š. Schwabik: The Perron product integral and generalized linear differential equations.Časopis pěst. mat. 115 (1990), 368-404. Zbl 0724.26006, MR 1090861
Reference: [17] Š. Schwabik: Generalized Ordinary Differential Equations.World Scientific, Singapore, 1992. Zbl 0781.34003, MR 1200241
Reference: [18] V. Volterra: Sulle equazioni differenziali lineari.Rend. Accademia dei Lincei 3 (1887), 393-396.
Reference: [19] V. Volterra B. Hostinský: Operations infinitesimales linéaires.Gauthier-Villars, Paris, 1938.
Reference: [20] K. Yosida: Functional Analysis.Springer, Berlin, 1965. Zbl 0126.11504
.

Files

Files Size Format View
MathBohem_119-1994-3_8.pdf 3.980Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo