Previous |  Up |  Next


Title: A note to a bifurcation result of H. Kielhöfer for the wave equation (English)
Author: Vejvoda, Otto
Author: Krejčí, Pavel
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 116
Issue: 3
Year: 1991
Pages: 245-247
Summary lang: English
Category: math
Summary: A modification of a classical number-theorem on Diophantine approximations is used for generalizing H. kielhöfer's result on bifurcations of nontrivial periodic solutions to nonlinear wave equations. (English)
Keyword: Diophantine approximations
Keyword: wave equation
Keyword: periodic solution
Keyword: bifurcation
MSC: 11J25
MSC: 35B10
MSC: 35B32
MSC: 35L70
idZBL: Zbl 0773.35008
idMR: MR1126446
DOI: 10.21136/MB.1991.126179
Date available: 2009-09-24T20:45:23Z
Last updated: 2020-07-29
Stable URL:
Reference: [1] H. Kielhöfer: Bifurcation of periodic solution for a semilinear wave equation.J. Math. Anal. Appl. 68 (1979), 408-420. 10.1016/0022-247X(79)90125-2
Reference: [2] H. Kielhöfer P. Kötzner: Stable periods of a semilinear wave equation and bifurcation of periodic solutions.j. Appl. Math. Phys. (ZAMP) 38 (1987), 204-212. 10.1007/BF00945406
Reference: [3] J. W. S. Cassels: An introduction to Diophantine approximation.Cambridge University Press no. 45, Cambridge, 1957. Zbl 0077.04801, MR 0087708


Files Size Format View
MathBohem_116-1991-3_2.pdf 385.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo