Previous |  Up |  Next

Article

Title: Fourier problem with bounded Baire data (English)
Author: Dont, Miroslav
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959
Volume: 122
Issue: 4
Year: 1997
Pages: 405-441
Summary lang: English
.
Category: math
.
Summary: The Fourier problem on planar domains with time moving boundary is considered using integral equations. Solvability of those integral equations in the space of bounded Baire functions as well as the convergence of the corresponding Neumann series are proved. (English)
Keyword: heat equation
Keyword: boundary value problem
Keyword: heat potential
Keyword: density
MSC: 31A10
MSC: 31A20
MSC: 31A25
MSC: 35C10
MSC: 35K05
MSC: 35R35
MSC: 47A10
MSC: 47B38
idZBL: Zbl 0898.31004
idMR: MR1489402
.
Date available: 2009-09-24T21:28:22Z
Last updated: 2015-09-15
Stable URL: http://hdl.handle.net/10338.dmlcz/126211
.
Reference: [1] M. Dont: On a heat potential.Czechoslovak Math. J. 25 (1975), 84-109. Zbl 0304.35051, MR 0369918
Reference: [2] M. Dont: On a boundary value problem for the heat equation.Czechoslovak Math. J. 25 (1975), 110-133. Zbl 0304.35052, MR 0369919
Reference: [3] M. Dont: A note on a heat potential and the parabolic variation.Časopis Pěst. Mat. 101 (1976), 28-44. Zbl 0325.35043, MR 0473536
Reference: [4] J. Král: Teoгie potenciálu I.SPN, Praha, 1965.
Reference: [5] D. Medková: On the convergence of Neumann series for noncompact operator.Czechoslovak Math. J. 116 (1991), 312-316. MR 1105448
Reference: [6] I. Netuka: Double layer potential and the Dirichlet problem.Czechoslovak Math. J. 24 (1974), 59-73. MR 0348127
Reference: [7] W. L. Wendland: Boundary element methods and their asymptotic convergence.Lecture Notes of the CISM Summer-School on Theoгetical acoustic and numerical techniques, Int. Centre Mech. Sci., Udine (P. Filippi, ed.). Springer-Verlag, Wien, New York, 1983, pp. 137-216. Zbl 0618.65109, MR 0762829
.

Files

Files Size Format View
MathBohem_122-1997-4_9.pdf 1.587Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo