Previous |  Up |  Next

Article

Title: Property (A) of $n$-th order ODE's (English)
Author: Džurina, Jozef
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 122
Issue: 4
Year: 1997
Pages: 349-356
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to deduce oscillatory and asymptotic behavior of the solutions of the ordinary differential equation L_nu(t)+p(t)u(t)=0. (English)
Keyword: property (A) of ODE's
Keyword: oscillatory behavior
Keyword: solutions
Keyword: ordinary differential equations
Keyword: quasiderivatives
Keyword: binomial equation
Keyword: delay-differential equation
Keyword: differential inequalities
Keyword: nonoscillatory solutions
MSC: 34C10
MSC: 34C11
MSC: 34D05
idZBL: Zbl 0903.34031
idMR: MR1489395
DOI: 10.21136/MB.1997.126218
.
Date available: 2009-09-24T21:27:18Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126218
.
Reference: [1] T. A. Chanturia, I. T. Kiguradze: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations.Nauka, Moscow, 1990. (In Russian.)
Reference: [2] J. Džurina: Comparison theorems for functional differential equations.Math. Nachrichten 164 (1993), 13-22. MR 1251452, 10.1002/mana.19931640103
Reference: [3] K. E. Foster, R. C. Grimmer: Nonoscillatory solutions of higher order differential equations.J. Math. Anal. Appl. 71 (1979), 1-17. Zbl 0428.34029, MR 0545858, 10.1016/0022-247X(79)90214-2
Reference: [4] P. Hartman, A. Wintner: Linear differential and difference equations with monotone solutions.Amer. J. Math. 75 (1953), 731-743. Zbl 0051.07105, MR 0057404, 10.2307/2372548
Reference: [5] T. Kusano, M. Naito: Comparison theorems for functional differential equations with deviating arguments.J. Math. Soc. Japan 3 (1981), 509-532. Zbl 0494.34049, MR 0620288, 10.2969/jmsj/03330509
Reference: [6] T. Kusano M. Naito, K. Tanaka: Oscillatory and asymptotic behavior of solutions of a class of linear ordinary differential equations.Proc. Roy. Soc. Edinburg. 90 (1981), 25-40. MR 0636062
Reference: [7] T. Kusano, M. Naito: Oscillation criteria for general ordinary differential equations.Pacific J. Math. 92 (1981), 345-355. MR 0618070, 10.2140/pjm.1981.92.345
Reference: [8] D. Knežo, V. Šoltés: Existence and properties of nonoscillation solutions of third order differential equations.Fasciculi Math. 25 (1995), 63-74. MR 1339626
Reference: [9] Š. Kulcsár: Boundedness convergence and global stability of solution of a nonlinear differential equations of the second order.Publ. Math. 37 (1990), 193-201. MR 1082298
Reference: [10] G. S. Ladde V. Lakshmikantham B. G. Zhang: Oscillation Theory of Differential Equations with Deviating Arguments.Dekker, New York, 1987. MR 1017244
Reference: [11] D. L. Lovelady: An asymptotic analysis of an odd order linear differential equation.Pacific J. Math. 57 (1975), 475-480. Zbl 0305.34054, MR 0379985, 10.2140/pjm.1975.57.475
Reference: [12] D. L. Lovelady: Oscillation of a class of odd order linear differential equations.Hiroshima Math. J. 5 (1975), 371-383. MR 0387722, 10.32917/hmj/1206136533
Reference: [13] W. E. Mahfoud: Comparison theorems for delay differential equations.Pacific J. Math. 83 (1979), 187-197. Zbl 0441.34053, MR 0555047, 10.2140/pjm.1979.83.187
Reference: [14] W. E. Mahfoud: Characterization of oscillation of solutions of the delay equation $x^{(n)} (t) +a(t)f(x[q(t)]) = 0.J. Differential Equations 28 (1978), 437-451. MR 0499605, 10.1016/0022-0396(78)90138-9
Reference: [15] M. Naito: On strong oscillation of retarded differential equations.Hiroshima Math. J. vol 11 (1981), 553-560. Zbl 0512.34056, MR 0635038, 10.32917/hmj/1206133990
Reference: [16] Ch. G. Philos, Y. G. Sficas: Oscillatory and asymptotic behavior of second and third order retarded differential equations.Czechoslovak Math. J. 32 (1982), 169-182. Zbl 0507.34062, MR 0654054
Reference: [17] M. Růžičková, E. Špániková: Oscillation theorems for neutral differential equations with the quasi-derivatives.Arch. Math. 30 (1994), 293-300. MR 1322574
Reference: [18] W. F. Trench: Oscillation properties of perturbed disconjugate equations.Proc. Amer. Math. Soc. 52 (1975), 147-155. Zbl 0321.34027, MR 0379987, 10.1090/S0002-9939-1975-0379987-7
.

Files

Files Size Format View
MathBohem_122-1997-4_2.pdf 487.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo