Article
Keywords:
closure system; distributive lattice; lattices of $\Sigma-closed subsets; modular lattice; algebraic structures; $\Sigma$-closed subset; convex subset
Summary:
Let $\Cal A =(A,F,R)$ be an algebraic structure of type $\tau$ and $\Sigma$ a set of open formulas of the first order language $L(\tau)$. The set $C_\Sigma(\Cal A)$ of all subsets of $A$ closed under $\Sigma$ forms the so called lattice of $\Sigma$-closed subsets of $\Cal A$. We prove various sufficient conditions under which the lattice $C_\Sigma(\Cal A)$ is modular or distributive.
References:
                        
[1] Chajda I.: 
A note on varieties with distributive subalgebra lattices. Acta Univ. Palack. Olomouc, Fac. Rer. Natur., Matematica 31 (1992), 25-28. 
MR 1212602 | 
Zbl 0777.08001 
[2] Chajda I., Emanovský P.: 
$\Sigma$-isomorphic algebraic structures. Mathem. Bohemica 120 (1995), 71-81. 
MR 1336947 | 
Zbl 0833.08001 
[3] Emanovský P.: 
Convex isomorphic ordered sets. Mathem. Bohemica 118 (1993), 29-35. 
MR 1213830 
[5] Jakubíková-Studenovská D.: 
Convex subsets of partial monounary algebras. Czech. Math. J. 38 (1988), no. 113, 655-672. 
MR 0962909 
[6] Marmazajev  V.I.: 
The lattice of convex sublattices of a lattice. Mezvužovskij naučnyj sbornik 6. Saratov, 1986, pp. 50-58. (In Russian.) 
MR 0957970