Previous |  Up |  Next

Article

Title: On some three-point problems for third-order differential equations (English)
Author: Rachůnková, Irena
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 117
Issue: 1
Year: 1992
Pages: 98-110
Summary lang: English
.
Category: math
.
Summary: This paper is concerned with existence and uniqueness of solutions of the three-point problem $u'''=f(t,u,u',u''), u(c)=0,u'(a)=u'(b). u''(a)=u''(b), a\leq c\leq b$. The problem is at resonance, in the sense that the associated linear problem has non-trivial solutions. We use the method of lower and upper solutions. (English)
Keyword: existence
Keyword: uniqueness
Keyword: three-point mixed problem
Keyword: method of lower and upper solutions
Keyword: lower and upper solutions
Keyword: resonance
Keyword: Carathéodory conditions
MSC: 34B10
MSC: 34B15
idZBL: Zbl 0759.34020
idMR: MR1154059
DOI: 10.21136/MB.1992.126232
.
Date available: 2009-09-24T20:50:35Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126232
.
Reference: [1] A. R. Aftabizadeh J. Wiener: Existence and uniqueness theorems for third order boundary value problems.Rend. Sem. Mat. Univ. Padova 75 (1986), 130-141. MR 0847662
Reference: [2] A. R. Aftabizadeh J. M. Xu C. P. Gupta: Existence and uniqueness theorems for three-point boundary value problems.SIAM J. Math. Anal. 20 (1989), 716-726. MR 0990873, 10.1137/0520049
Reference: [3] R. P. Agarwal: On boundary value problems for y'" = f(x,y,y',y").Bull. of the Inst. Math. Acad. Sinica 12 (1984), 153-157. MR 0765109
Reference: [4] R. P. Agarwal: Existence-uniqueness and iterative methods for third order boundary value problems.J. Comp. Anal. Math., to appear. Zbl 0617.34008, MR 0883170
Reference: [5] J. Andres: On a boundary value problem for x'" = f(t,x,x',x").Acta UPO, ser. mat. 27 (1988), 289-298. MR 1039896
Reference: [6] D. Barr T. Sherman: Existence and uniqueness of solutions of three-point boundary value problems.J. Diff. Eqs. 13 (1973), 197-212. MR 0333326, 10.1016/0022-0396(73)90014-4
Reference: [7] S. A. Bespalova J. A. Klokov: A three-point boundary value problem for a third-order nonlinear ordinary differential equation.Diff. uravn. 12 (1976), 963-970. (In Russian.) MR 0425230
Reference: [8] G. Carristi: A three-point boundary value problem for a third order differential equation.Boll. Um. Mat. Ital, C 4 1 (1985), 259-269. MR 0805218
Reference: [9] K. M. Das B. S. Lalli: Boundary value problems for y'" = f(x,y,y',y").J. Math. Anal. Appl. 81 (1981), 300-307. MR 0622819, 10.1016/0022-247X(81)90064-0
Reference: [10] A. Granas R. Guenther J. Lee: Nonlinear Boundary Value Problems for Ordinary Differential Equatins.Polish Acad, of Sciences, 1985. MR 0808227
Reference: [11] M. Greguš: Third Order Linear Boundary Value Problems.D. Reidel Publishing Co., 1987. MR 0882545
Reference: [12] C. P. Gupta: On a third-order three-point boundary value problem at resonance.Diff. Int. Equations 2 (1989), 1-12. Zbl 0722.34014, MR 0960009
Reference: [13] G. H. Hardy J. E. Littlewood G. Polya: Inequalities.IL, Moscow, 1970. (In Russian.)
Reference: [14] J. Henderson: Best interval lengths for boundary value problems for third order Lipschitz equations.SIAM J. Math Anal. 18 (1987), 293-305. Zbl 0668.34017, MR 0876272, 10.1137/0518023
Reference: [15] S. Hu V. Lakshmikantham: Periodic boundary value problems for integro-differential equations of Volterra type.Nonlinear Anal. 10 (1986), 1203-1208. Zbl 0622.45007, MR 0866253, 10.1016/0362-546X(86)90059-3
Reference: [16] I. T. Kiguradze: Some Singular Boundary Value Problems for Ordinary Differential Equations.Univ. Press, Tbilisi, 1975. (In Russian.) MR 0499402
Reference: [17] E. Lepina A. Lepin: Existence of a solution of the three-point BVP for a nonlinear third-order ordinary differential equation.Latv. M. E. 4 (1986), 247-256. (In Russian.)
Reference: [18] E. Lepina A. Lepin: Necessary and sufficient conditions for existence of a solution of a three-point BVP for a nonlinear third order differential equation.Latv. M. E. 8 (1970), 149-154. (In Russian.)
Reference: [19] K. N. Murthy D. R. K. S. Rao: On existence and uniqueness of solutions of two and three point boundary value problems.Bull. Calcuta Math. Soc. 73,3 (1981), 164-172. MR 0669619
Reference: [20] K. N. Murthy B. D. C. N. Prasad: Three-point boundary value problems, existence and uniqueness.Yokohama Math. J. 29 (1981), 101-105. MR 0649612
Reference: [21] K. N. Murthy B. D. C. N. Prasad: Application of Lyapunov theory to three-point boundary value problems.J. Math. Phys. Sci. 19 (1985), 225-234. MR 0863375
Reference: [22] L. I. Pospelov: Necessary and sufficient conditions for existence of a solution for some BVPs for the third order nonlinear ordinary differential equation.Latv. M. E. 8 (1970), 205-213. (In Russian.)
Reference: [23] D. J. O'Regan: Topological transversality: Applications to third order boundary value problems.SIAM J. Math. Anal. 18 (1987), 630-641. Zbl 0628.34017, MR 0883557, 10.1137/0518048
Reference: [24] J. Rusnák: A three-point boundary value problem for third order differential equations.Math. Slovaca 33 (1983), 307-320. MR 0713954
Reference: [25] N. I. Vasiljev J. A. Klokov: Elements of the Theory of Boundary Value Problems for Ordinary Differential Equations.Zinatne, Riga, 1978. (In Russian.)
.

Files

Files Size Format View
MathBohem_117-1992-1_11.pdf 1.278Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo