Previous |  Up |  Next


total semidomatic numbers; numerical invariants; directed graphs; outside-semidomatic number; inside-semidomatic number; total outside-semidomatic number; total inside-semidomatic number
Certain numerical invariants of directed graphs, analogous to the domatic number and to the total domatic number of an undirected graph, are introduced and studied.
[1] E. J. Cockayne S. T. Hedetniemi: Towards a theory of domination in graphs. Networks 7 (1977), 247-261. DOI 10.1002/net.3230070305 | MR 0483788
[2] E. J. Cockayne: Domination of undirected graphs-a survey. Theory and Application of Graphs, Proc, Michigan 1976 (Y. Alavi, D. R. Lick, eds.), Springer Verlag, Berlin-Heidelberg-New York, 1978. MR 0499485
[3] E. J. Cockayne R. M. Dawes S. T Hedetniemi: Total domination in graphs. Networks 10(1980), 211-219. MR 0584887
[4] D. König: Theorie der endlichen und unendlichen Graphen. Teubner, Leipzig, 1936. MR 0886676
[5] O. Ore: Theory of Graphs. AMS Coll. Publ., Providence, 1962. MR 0150753 | Zbl 0105.35401
[6] B. Zelinka: Semidomatic numbers of directed graphs. Math. Slovaca 34 (1984), 371-374. MR 0775244 | Zbl 0602.05038
Partner of
EuDML logo