Previous |  Up |  Next

Article

Keywords:
Hardy inequality; function spaces
Summary:
Let $\Omega$ be a bounded $C^\infty$ domain in $\Bbb{R}^n$. The paper deals with inequalities of Hardy type related to the function spaces $B^s_{pq}(\Omega)$ and $F^s_{pq}(\Omega)$.
References:
[1] Bergh J., Löfström J.: Interpolation Spaces. Springer, Berlin, 1976.
[2] Edmunds D. E., Haroske D.: Spaces of Lipschitz Type, Embeddings and Entropy Numbers. Preprint, Jena, 1998. MR 1677961
[3] Edmunds D. E., Triebel H.: Function Spaces, Entropy Numbers, Differential Operators. Cambridge Univ. Press, Cambridge, 1996. MR 1410258 | Zbl 0865.46020
[4] Franke J.: On the spaces $F_{pq}^s$ of Triebel-Lizorkin type: pointwise multipliers and spaces on domains. Math. Nachr. 125 (1986), 29-68. MR 0847350
[5] Grisvard P.: Caractérisation de quelques éspaces d'interpolation. Arch. Rational Mech. Anal. 25 (1967), 40-63. DOI 10.1007/BF00281421 | MR 0213864 | Zbl 0187.05901
[6] Grisvard P.: Équations différentielies abstraites. Ann. Sci. École Norm. Sup. 2 (1969), no. 4, 311-395. MR 0270209
[7] Löfström J.: Interpolation of boundary value probleras of Neumann type on smooth domains. J. London Math. Soc. 46 (1992), 499-516. DOI 10.1112/jlms/s2-46.3.499 | MR 1190434
[8] Runst, Th., Sickel W.: Sobolev Spaces of Practional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. W. de Gruyter, Berlin 1996. MR 1419319
[9] Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam, 1978 (2nd ed. Barth, Heidelberg 1995). MR 1328645 | Zbl 0387.46033
[10] Triebel H.: Theory of Function Spaces. Birkhäuser, Basel, 1983. MR 0781540 | Zbl 0546.46028
[11] Triebel H.: Theory of Function Spaces II. Birkhäuser, Basel, 1992. MR 1163193 | Zbl 0763.46025
[12] Triebel H.: Approximation numbers and entropy numbers of embeddings of fractional Besov-Sobolev spaces in Orlicz spaces. Proc.London Math.Soc. 66 (1993), 589-618. MR 1207550 | Zbl 0792.46024
[13] Triebel H.: Decompositions of function spaces. Topics in Nonlinear Analysis. Birkhäuser, Basel, 1999, pp. 691-730. MR 1725591 | Zbl 0920.46027
Partner of
EuDML logo