Previous |  Up |  Next

Article

Title: Traces of anisotropic Besov-Lizorkin-Triebel spaces---a complete treatment of the borderline cases (English)
Author: Farkas, Walter
Author: Johnsen, Jon
Author: Sickel, Winfried
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 125
Issue: 1
Year: 2000
Pages: 1-37
Summary lang: English
.
Category: math
.
Summary: Including the previously untreated borderline cases, the trace spaces (in the distributional sense) of the Besov-Lizorkin-Triebel spaces are determined for the anisotropic (or quasi-homogeneous) version of these classes. The ranges of the traces are in all cases shown to be approximation spaces, and these are shown to be different from the usual spaces precisely in the cases previously untreated. To analyse the new spaces, we carry over some real interpolation results as well as the refined Sobolev embeddings of J. Franke and B. Jawerth to the anisotropic scales. (English)
Keyword: anisotropic Besov and Lizorkin-Triebel spaces
Keyword: approximation spaces
Keyword: trace operators
Keyword: boundary problems
Keyword: interpolation
Keyword: atomic decompositions
Keyword: refined Sobolev embeddings
Keyword: anisotropic scales
MSC: 46E35
idZBL: Zbl 0970.46019
idMR: MR1752077
DOI: 10.21136/MB.2000.126262
.
Date available: 2009-09-24T21:39:54Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126262
.
Reference: [1] S. Agmon L. Hörmander: Asymptotic properties of differential equations with simple characteristics.J. Anal. Math. 1 (1976), 1-38. MR 0466902, 10.1007/BF02786703
Reference: [2] N. Aronszajn: Boundary values of functions with finite Dirichlet integral.Studies in Eigenvalue Problems, vol. 14, Univ. of Kansas, 1955. Zbl 0068.08201
Reference: [3] J. Bergh J. Löfström: Interpolation Spaces. An Introduction.Springer, Berlin, 1976. MR 0482275
Reference: [4] O. V. Besov V. P. Ilyin S. M. Nikol'skij: Integral Representations of Functions, Imbedding Theorems.Nauka, Moskva, 1967. (In Russian.)
Reference: [5] V. I. Burenkov M. L. Gol'dman: On the extensions of functions of $L_p$.Trudy Mat. Inst. Steklov. 150 (1979), 31-51. English transl. 1981, no. 4, 33-53. MR 0544003
Reference: [6] P. Dintelmann: On Fourier multipliers between anisotropic weighted function spaces.Ph.D.Thesis, TH Darmstadt, 1995. (In German.)
Reference: [7] P. Dintelmann: Classes of Fourier multipliers and Besov-Nikol'skij spaces.Math. Nachr. 173 (1995). 115-130. MR 1336956, 10.1002/mana.19951730108
Reference: [8] W. Farkas: Atomic and subatomic decompositions in anisotropic function spaces.Math. Nachr. To appear. Zbl 0954.46021, MR 1734360
Reference: [9] C. Fefferman E. M. Stein: Some maximal inequalities.Amer. J. Math. 93 (1971), 107-115. MR 0284802, 10.2307/2373450
Reference: [10] J. Franke: On the spaces $F_{p,q}^s$ of Triebel-Lizorkin type: Pointwise multipliers and spaces on domains.Math. Nachr. 125 (1986), 29-68. MR 0847350, 10.1002/mana.19861250104
Reference: [11] M. Frazier B. Jawerth: Decomposition of Besov spaces.Indiana Univ. Math, J. 34 (1985), 777-799. MR 0808825, 10.1512/iumj.1985.34.34041
Reference: [12] M. Frazier B. Jawerth: A discrete transform and decomposition of distribution spaces.J. Functional Anal. 93 (1990), 34-170. MR 1070037, 10.1016/0022-1236(90)90137-A
Reference: [13] E. Gagliardo: Caraterizzazioni della trace sulla frontiera relative ad alcune classi di funzioni in n variabili.Rend. Sem. Mat. Univ. Padova 27 (1957), 284-305. MR 0102739
Reference: [14] G. Grubb: Pseudo-differential boundary problems in $L_p$ spaces.Comm. Partial Differential Equations 15 (1990), 289-340. MR 1044427, 10.1080/03605309908820688
Reference: [15] G. Grubb: Functional Calculus of Pseudodifferential Boundary Problems.Birkhäuser, Basel, 1996, second edition. Zbl 0844.35002, MR 1385196
Reference: [16] G. Grubb: Parameter-elliptic and parabolic pseudodifferential boundary problems in global $L_p$ Sobolev spaces.Math. Z. 218 (1995), 43-90. MR 1312578, 10.1007/BF02571889
Reference: [17] L. Hörmander: The Analysis of Linear Partial Differential Operators I-IV.Springer, Berlin, 1983-85. MR 0717035
Reference: [18] B. Jawerth: Some observations on Besov and Lizorkin-Triebel spaces.Math. Scand. 40 (1977), 94-104. Zbl 0358.46023, MR 0454618, 10.7146/math.scand.a-11678
Reference: [19] B. Jawerth: The trace of Sobolev and Besov spaces if 0 < p < 1.Studla Math. 62 (1978), 65-71. Zbl 0423.46022, MR 0482141
Reference: [20] J. Johnsen: Pointwise multiplication of Besov and Triebel-Lizorkin spaces.Math. Nachr. 175 (1995), 85-133. Zbl 0839.46026, MR 1355014, 10.1002/mana.19951750107
Reference: [21] J. Johnsen: Elliptic boundary problems and the Boutet de Monvel calculus in Besov and Triebel-Lizorkin spaces.Math. Scand. 79 (1996), 25-85. Zbl 0873.35023, MR 1425081, 10.7146/math.scand.a-12593
Reference: [22] J. Johnsen: Traces of Besov spaces revisited.Submitted 1998.
Reference: [23] G. A. Kalyabin: Description of traces for anisotropic spaces of Triebel-Lizorkin type.Trudy Mat. Inst. Steklov. 150 (1979), 160-173. English transl. 1981, no. 4, 169-183. Zbl 0417.46040, MR 0544009
Reference: [24] J. Marschall: Remarks on nonregular pseudo-differential operators.Z. Anal. Anwendungen 15(1996), 109-148. MR 1376592, 10.4171/ZAA/691
Reference: [25] Yu. V. Netrusov: Imbedding theorems of traces of Besov spaces and Lizorkin-Triebel spaces.Dokl. AN SSSR 298 (1988), no. 6. English transl. Soviet Math. Doki. 37 (1988), no. 1, 270-273. MR 0947796
Reference: [26] Yu. V. Netrusov: Sets of singularities of functions in spaces of Besov and Lizorkin-Triebel type.Trudy Mat. Inst. Steklov. 187(1989), 162-177. English transl. 199, no. 3, 185-203. MR 1006450
Reference: [27] S. M. Nikol'skij: Inequalities for entire analytic functions of finite order and their application to the theory of differentiable functions of several variables.Trudy Mat. Inst. Steklov. 38 (1951), 244-278. Detailed review available in Math. Reviews.
Reference: [28] S. M. Nikol'skij: Approximation of Functions of Several Variables end Imbedding Theorems.Springer, Berlin, 1975.
Reference: [29] M. Oberguggenberger: Multiplication of distributions and applications to partial differential equations.Pitman notes, vol. 259, Longman Scientific & Technical, England, 1992. Zbl 0818.46036
Reference: [30] P. Oswald: Multilevel Finite Element Approximation: Theory and Applications.Teubner, Stuttgart, 1995. MR 1312165
Reference: [31] J. Peetre: The trace of Besov spaces-a limiting case.Technical Report, Lund, 1975.
Reference: [32] T. Runst W. Sickel: Sobolev Spaces of Fractional Order, Nemytskij Operators and Nonlinear Partial Differential Equations.De Gruyter, Berlin, 1996. MR 1419319
Reference: [33] H.-J. Schmeisser H. Triebel: Topics in Fourier Analysis and Function Spaces.Wiley, Chichester, 1987. MR 0891189
Reference: [34] A.Seeger: A note on Triebel-Lizorkin spaces.Approximations and Function Spaces, vol. 22, Banach Centre Publ., PWN Polish Sci. Publ., Warszaw, 1989, pp. 391-400. Zbl 0698.42008, MR 1097208
Reference: [35] E. M. Stein: Singular Integrals and Differentiability Properties of Functions.Princeton Univ. Press, Princeton, 1970. Zbl 0207.13501, MR 0290095
Reference: [36] E. M. Stein S. Wainger: Problems in harmonic analysis related to curvature.Bull. Amer. Math. Soc. 84 (1978), J 239-1295. MR 0508453
Reference: [37] B. Stöckert H. Triebel: Decomposition methods for function spaces of $B_{p,q}^s$ type and $F_{p,q}^s$ type.Math. Nachr. 89 (1979), 247-267. MR 0546886, 10.1002/mana.19790890121
Reference: [38] H. Triebel: Fourier Analysis and Function Spaces.Teubner-Texte Math., vol. 7, Teubner, Leipzig, 1977. Zbl 0345.42003, MR 0493311
Reference: [39] H. Triebel: Spaces of Besov-Hardy-Sobolev Type.Teubner-Texte Math., vol. 8, Teubner, Leipzig, 1978. Zbl 0408.46024, MR 0581907
Reference: [40] H. Triebel: Theory of Function Spaces.Birkhäuser, Basel, 1983. Zbl 0546.46028, MR 0781540
Reference: [41] H. Triebel: Theory of Function Spaces II.Birkhäuser, Basel, 1992. Zbl 0763.46025, MR 1163193
Reference: [42] H. Triebel: Fractals and Spectra.Birkhäuser, Basel, 1997. Zbl 0898.46030, MR 1484417
Reference: [43] M. Yamazaki: A quasi-homogeneous version of paradifferential operators, I: Boundedness on spaces of Besov type.J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 33 (1986), 131-174. Zbl 0608.47058, MR 0837335
Reference: [44] M. Yamazaki: A quasi-homogeneous version of paradifferential operators, II: A symbolic calculus.J.Fac. Sci. Univ. Tokyo, Sect. IA Math. 33 (1986), 311-345. MR 0866396
.

Files

Files Size Format View
MathBohem_125-2000-1_1.pdf 8.833Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo