Previous |  Up |  Next

Article

Title: Reaction-diffusion systems: Destabilizing effect of conditions given by inclusions (English)
Author: Eisner, Jan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 125
Issue: 4
Year: 2000
Pages: 385-420
Summary lang: English
.
Category: math
.
Summary: Sufficient conditions for destabilizing effects of certain unilateral boundary conditions and for the existence of bifurcation points for spatial patterns to reaction-diffusion systems of the activator-inhibitor type are proved. The conditions are related with the mollification method employed to overcome difficulties connected with empty interiors of appropriate convex cones. (English)
Keyword: bifurcation
Keyword: spatial patterns
Keyword: reaction-diffusion system
Keyword: mollification
Keyword: inclusions
MSC: 35B32
MSC: 35J85
MSC: 35K40
MSC: 35K57
MSC: 35K58
MSC: 47H04
MSC: 47N20
idZBL: Zbl 0963.35016
idMR: MR1802290
DOI: 10.21136/MB.2000.126272
.
Date available: 2009-09-24T21:45:00Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126272
.
Reference: [1] E. N. Dancer: On the structure of solutions of non-linear eigenvalue problems.Indiana Univ. Math. J. 23 (1974), 1069-1076. Zbl 0276.47051, MR 0348567, 10.1512/iumj.1974.23.23087
Reference: [2] P. Drábek M. Kučera M. Míková: Bifurcation points of reaction-diffusion systems with unilateral conditions.Czechoslovak Math. J. 35 (1985), 639-660. MR 0809047
Reference: [3] P. Drábek M. Kučera: Eigenvalues of inequalities of reaction-diffusion type and destabilizing effect of unilateral conditions.Czechoslovak Math. J. 36 (1986), 116-130. MR 0822872
Reference: [4] P. Drábek M. Kučera: Reaction-diffusion systems: Destabilizing effect of unilateral conditions.Nonlinear Anal. 12 (1988), 1173-1192. MR 0969497, 10.1016/0362-546X(88)90051-X
Reference: [5] G. Duvaut J. L. Lions: Les Inéquations en Mechanique et en Physique.Dunod, Paris, 1972. MR 0464857
Reference: [6] J. Eisner M. Kučera: Spatial patterns for reaction-diffusion systems with conditions described by inclusions.Appl. of Math. 42 (1997), 421-449. MR 1475051, 10.1023/A:1022203129542
Reference: [7] J. Eisner: Critical and bifurcation points of reaction-diffusion systems with conditions given by inclusions.Preprint Math. Inst. Acad. Sci. of the Czech Republic, No. 118, Praha, 1997. To appear in Nonlinear Anal. MR 1845578
Reference: [8] J. Eisner M. Kučera: Spatial patterning in reaction-diffusion systems with nonstandard boundary conditions.Fields Inst. Commun. 25 (2000), 239-256. MR 1759546
Reference: [9] J. Eisner: Reaction-diffusion systems: Destabilizing effect of conditions given by inclusions. Part II, Examples.To appear in Math. Bohem. MR 1826476
Reference: [10] S. Fučík A. Kufner: Nonlinear Differential Equations.Elsevier, Amsterdam, 1980. MR 0558764
Reference: [11] A. Gierer H. Meinhardt: A theory of biological pattern formation.Kybernetik 12 (1972), 30-39. 10.1007/BF00289234
Reference: [12] M. Kučera J. Neustupa: Destabilizing effect of unilateral conditions in reaction-diffusion systems.Comment. Math. Univ. Carol. 27 (1986), 171-187. MR 0843429
Reference: [13] M. Kučera: Stability and bifurcation problems for reaction-diffusion system with unilateral conditions.Equadiff 6 (J. Vosmanský, M. Zlámal, eds.). Brno, Universita J. E. Purkyně, 1986, pp. 227-234. MR 0877129, 10.1007/BFb0076074
Reference: [14] M. Kučera: A global continuation theorem for obtaining eigenvalues and bifurcation points.Czechoslovak Math. J. 38 (1988), 120-137. MR 0925946
Reference: [15] M. Kučera M. Bosák: Bifurcation for quasi-variational inequalities of reaction diffusion type.Proceedings of EQUAM 92, International Conference on Differential Equations and Mathematical Modelling, Varenna 1992. SAACM 3, 1993, pp. 121-127.
Reference: [16] M. Kučera: Bifurcation of solutions to reaction-diffusion system with unilateral conditions.Navier-Stokes Equations and Related Topics (A. Sequeira, ed.). Plenum Press, New York, 1995, pp. 307-322. MR 1373224
Reference: [17] M. Kučera: Reaction-diffusion systems: Bifurcation and stabilizing effect of conditions given by inclusions.Nonlinear Anal. 27 (1996), 249-260. MR 1391435, 10.1016/0362-546X(95)00055-Z
Reference: [18] M. Kučera: Reaction-diffusion systems: Stabilizing effect of conditions described by quasivariational inequalities.Czechoslovak Math. J. 47 (1997), 469-486. MR 1461426, 10.1023/A:1022411501260
Reference: [19] M. Kučera: Bifurcation of solutions to reaction-diffusion system with conditions described by inequalities and inclusions.Nonlinear Anal. Theory Methods Appl. 30 (1997), 3683-3694. MR 1602910
Reference: [20] M. Mimura Y. Nishiura M. Yamaguti: Some diffusive prey and predator systems and their bifurcation problems.Ann. N.Y. Acad. Sci. 316 (1979), 490-521. MR 0556853, 10.1111/j.1749-6632.1979.tb29492.x
Reference: [21] H. Meinhardt: The algorithmic beauty of sea shells.Springer-Verlag, Berlin, 1996. MR 1325695
Reference: [22] J. D. Murray: Mathematical Biology.Springer-Verlag, Berlin, 1993. MR 1239892
Reference: [23] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Praha, Academia, 1967. MR 0227584
Reference: [24] L. Nirenberg: Topics in Nonlinear Functional Analysis.New York, 1974. Zbl 0286.47037, MR 0488102
Reference: [25] Y. Nishiura: Global structure of bifurcating solutions of some reaction-diffusion systems.SIAM J. Math. Analysis 13 (1982), 555-593. Zbl 0505.76103, MR 0661590, 10.1137/0513037
Reference: [26] P. Quittner: Bifurcation points and eigenvalues of inequalities of reaction-diffusion type.J. Reine Angew. Math. 380 (1987), 1-13. Zbl 0617.35053, MR 0916198
Reference: [27] A. M. Turing: The chemical basis of morphogenesis.Phil. Trans. Roy. Soc. (1952), 37-72.
.

Files

Files Size Format View
MathBohem_125-2000-4_1.pdf 7.886Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo