Title:
|
Ordered prime spectra of bounded $DRl$-monoids (English) |
Author:
|
Rachůnek, Jiří |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
125 |
Issue:
|
4 |
Year:
|
2000 |
Pages:
|
505-509 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Ordered prime spectra of Boolean products of bounded $DRl$-monoids are described by means of their decompositions to the prime spectra of the components. (English) |
Keyword:
|
$DRl$-monoid |
Keyword:
|
prime ideal |
Keyword:
|
spectrum |
Keyword:
|
$MV$-algebra |
MSC:
|
03G20 |
MSC:
|
06F05 |
idZBL:
|
Zbl 0967.06011 |
idMR:
|
MR1802299 |
DOI:
|
10.21136/MB.2000.126274 |
. |
Date available:
|
2009-09-24T21:46:20Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/126274 |
. |
Reference:
|
[1] S. Burris H. P. Sankappanavar: A Course in Universal Algebra.Springer-Verlag, Berlin, 1977. MR 0648287 |
Reference:
|
[2] C. C. Chang: Algebraic analysis of many valued logics.Trans. Amer. Math. Soc. 88 (1958), 467-490. Zbl 0084.00704, MR 0094302, 10.1090/S0002-9947-1958-0094302-9 |
Reference:
|
[3] C. C. Chang: A new proof of the completeness of the Lukasiewicz axioms.Trans. Amer. Math. Soc. 93 (1959), 74-80. Zbl 0093.01104, MR 0122718 |
Reference:
|
[4] R. Cignoli A. Torrens: The poset of prime l-ideaІs of an abelian l-group with a strong unit.J. Algebra 184 (1996), 604-614. MR 1409232, 10.1006/jabr.1996.0278 |
Reference:
|
[5] T. Kovář: A general theory of dually residuated lattice ordered monoids.Thesis, Palacký Univ. Olomouc, 1996. |
Reference:
|
[6] D. Mundici: Interpretation of AF C*-algebras jn Lukasiewicz sentential calculus.J. Funct. Analys. 65 (1986), 15-63. MR 0819173, 10.1016/0022-1236(86)90015-7 |
Reference:
|
[7] J. Rachůnek: Spectra of autometrized lattice algebras.Math. Bohem. 123 (1998), 87-94. MR 1618727 |
Reference:
|
[8] J. Rachůnek: DRl-semigroups and MV-algebras.Czechoslovak Math. J. 48 (1998), 365-372. MR 1624268, 10.1023/A:1022801907138 |
Reference:
|
[9] J. Rachůnek: MV-algebras are categorically equivalent to a class of $DRl_{1(i)}$-semigroups.Math. Bohem. 123 (1998), 437-441. MR 1667115 |
Reference:
|
[10] J. Rachůnek: Polars and annihilators in representable DRl-monoids and MV-algebras.(submitted). |
Reference:
|
[11] K. L. N. Swamy: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105-114. Zbl 0138.02104, MR 0183797, 10.1007/BF01360284 |
Reference:
|
[12] K. L. N. Swamy: Dually residuated lattice ordered semigroups II.Math. Ann. 160 (1965), 64-71. MR 0191851, 10.1007/BF01364335 |
Reference:
|
[13] K. L. N.Swamy: Dually residuated lattice ordered semigroups III.Math. Ann. 167 (1966), 71-74. MR 0200364, 10.1007/BF01361218 |
. |