Previous |  Up |  Next

Article

Keywords:
factorable tolerance; powers of finite algebras; finite algebra; power
Summary:
It is shown that any power $A^n, n\geq 2$, of a finite $k$-element algebra $A, k\geq 2$, has factorable tolerances whenever the power $A^{4k^2-3k}$ has the same property.
References:
[1] S. Burris R. Willard: Finitely many primitive positive clones. Proc. Amer. Math. Soc. 101 (1987), 427-430. DOI 10.1090/S0002-9939-1987-0908642-5 | MR 0908642
[2] I. Chajda: Lattices of compatible relations. Arch. Math. Brno 13 (1977), 89-96. MR 0463081 | Zbl 0372.08002
[3] R. Willard: Congruence lattices of powers of an algebra. Algebra Univ. 26 (1989), 332-340. DOI 10.1007/BF01211839 | MR 1044852 | Zbl 0686.08008
Partner of
EuDML logo