Previous |  Up |  Next

Article

Title: Descriptions of state spaces of orthomodular lattices (the hypergraph approach) (English)
Author: Navara, Mirko
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 117
Issue: 3
Year: 1992
Pages: 305-313
Summary lang: English
.
Category: math
.
Summary: Using the general hypergraph technique developed in [7], we first give a much simpler proof of Shultz's theorem [10]: Each compact convex set is affinely homeomorphic to the state space of an orthomodular lattice. We also present partial solutions to open questions formulated in [10] - we show that not every compact convex set has to be a state space of a unital orthomodular lattice and that for unital orthomodular lattices the state space characterization can be obtained in the context of unital hypergraphs. (English)
Keyword: affine homeomorphism
Keyword: compact convex set
Keyword: hypergraph
Keyword: unital orthomodular lattices
Keyword: state space representation
Keyword: orthomodular lattice
Keyword: state space
MSC: 03G12
MSC: 05C65
MSC: 06C15
idZBL: Zbl 0772.06008
idMR: MR1184544
DOI: 10.21136/MB.1992.126280
.
Date available: 2009-09-24T20:54:05Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126280
.
Reference: [1] Greechie R.J.: Orthomodular lattices admitting no states.J. Comb. Theory 10(1971), 119-132. Zbl 0219.06007, MR 0274355, 10.1016/0097-3165(71)90015-X
Reference: [2] Gudder S.P.: Stochastic Methods in Quantum Mechanics.North Holland, New York, 1979. Zbl 0439.46047, MR 0543489
Reference: [3] Gudder S., Kläy M.P., Rüttimann G.T.: States on hypergraphs.Demonstratio Math. 19 (1986), 503-526. MR 0895021
Reference: [4] Kalmbach G.: Orthomodular Lattices.Academic Press, London, 1983. Zbl 0528.06012, MR 0716496
Reference: [5] Navara M.: State space properties of finite logics.Czechoslovak Math. J. 37 (112) (1987), 188-196. Zbl 0647.03057, MR 0882593
Reference: [6] Navara M.: State space of quantum logics.Thesis, Technical University of Prague, 1987. (In Czech.)
Reference: [7] Navara M., Rogatewicz V.: Construction of orthomodular lattices with given state spaces.Demonstratio Math. 21 (1988), 481-493. MR 0981700, 10.1515/dema-1988-0218
Reference: [8] Pták P.: Exotic logics.Coll. Math. 54 (1987), 1-7. MR 0928651, 10.4064/cm-54-1-1-7
Reference: [9] Pták P., Pulmannová S.: Orthomodular Structures as Quantum Logics.Kluwer Academic Publishers, Dordrecht/Boston/London, 1991. Zbl 0743.03039, MR 1176314
Reference: [10] Shultz F. W.: A characterization of state spaces of orthomodular lattices.J. Comb. Theory (A) 17 (1974), 317-328. MR 0364042, 10.1016/0097-3165(74)90096-X
.

Files

Files Size Format View
MathBohem_117-1992-3_9.pdf 1.274Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo