Previous |  Up |  Next

Article

Title: On the set of solutions of the system $x\sb 1+x\sb 2+x\sb 3=1, x\sb 1x\sb 2x\sb 3=1$ (English)
Author: Hlaváček, Miloslav
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 123
Issue: 1
Year: 1998
Pages: 1-6
Summary lang: English
.
Category: math
.
Summary: A proof is given that the system in the title has infinitely many solutions of the form $a_1 + \ii a_2$, where $a_1$ and $a_2$ are rational numbers. (English)
Keyword: equations in many variables
Keyword: linear diophantine equations
Keyword: multiplicative equations
Keyword: Weierstrass $p$-function
Keyword: diophantine equations
MSC: 10B05
MSC: 10M05
MSC: 11D04
MSC: 11D25
MSC: 11D72
MSC: 11G05
idZBL: Zbl 0898.11008
idMR: MR1618699
DOI: 10.21136/MB.1998.126294
.
Date available: 2009-09-24T21:28:42Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126294
.
Reference: [1] K. Chandrasekharan: Elliptic Functions.Springer-Verlag, Berlin. Heidelberg, 1985. Zbl 0575.33001, MR 0808396
Reference: [2] S. Schwarz: Algebraic Numbers.Přírodovědecké nakladatelství, Praha, 1950. (In Slovak.) MR 0048500
.

Files

Files Size Format View
MathBohem_123-1998-1_1.pdf 382.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo