Title:
|
On the set of solutions of the system $x\sb 1+x\sb 2+x\sb 3=1, x\sb 1x\sb 2x\sb 3=1$ (English) |
Author:
|
Hlaváček, Miloslav |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
123 |
Issue:
|
1 |
Year:
|
1998 |
Pages:
|
1-6 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A proof is given that the system in the title has infinitely many solutions of the form $a_1 + \ii a_2$, where $a_1$ and $a_2$ are rational numbers. (English) |
Keyword:
|
equations in many variables |
Keyword:
|
linear diophantine equations |
Keyword:
|
multiplicative equations |
Keyword:
|
Weierstrass $p$-function |
Keyword:
|
diophantine equations |
MSC:
|
10B05 |
MSC:
|
10M05 |
MSC:
|
11D04 |
MSC:
|
11D25 |
MSC:
|
11D72 |
MSC:
|
11G05 |
idZBL:
|
Zbl 0898.11008 |
idMR:
|
MR1618699 |
DOI:
|
10.21136/MB.1998.126294 |
. |
Date available:
|
2009-09-24T21:28:42Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/126294 |
. |
Reference:
|
[1] K. Chandrasekharan: Elliptic Functions.Springer-Verlag, Berlin. Heidelberg, 1985. Zbl 0575.33001, MR 0808396 |
Reference:
|
[2] S. Schwarz: Algebraic Numbers.Přírodovědecké nakladatelství, Praha, 1950. (In Slovak.) MR 0048500 |
. |