Previous |  Up |  Next

Article

Title: Location-domatic number of a graph (English)
Author: Zelinka, Bohdan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 123
Issue: 1
Year: 1998
Pages: 67-71
Summary lang: English
.
Category: math
.
Summary: A subset $D$ of the vertex set $V(G)$ of a graph $G$ is called locating-dominating, if for each $x\in V(G)-D$ there exists a vertex $y\to D$ adjacent to $x$ and for any two distinct vertices $x_1$, $x_2$ of $V(G)-D$ the intersections of $D$ with the neighbourhoods of $x_1$ and $x_2$ are distinct. The maximum number of classes of a partition of $V(G)$ whose classes are locating-dominating sets in $G$ is called the location-domatic number of $G.$ Its basic properties are studied. (English)
Keyword: locating-dominating set
Keyword: location-domatic partition
Keyword: location-domatic number
Keyword: domatic number
MSC: 05C35
idZBL: Zbl 0898.05034
idMR: MR1618719
DOI: 10.21136/MB.1998.126298
.
Date available: 2009-09-24T21:29:18Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/126298
.
Reference: [1] E. J. Cockayne S. T. Hedetniemi: Towards a theory of domination in graphs.Networks 7 (1977), 247-261. MR 0483788, 10.1002/net.3230070305
Reference: [2] D. F. Rall P. J. Slater: On location-domination numbers for certain classes of graphs.Congressus Numerantium 45 (1984), 77-106. MR 0777715
.

Files

Files Size Format View
MathBohem_123-1998-1_5.pdf 403.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo