Title:
|
Linear integral equations in the space of regulated functions (English) |
Author:
|
Tvrdý, Milan |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
123 |
Issue:
|
2 |
Year:
|
1998 |
Pages:
|
177-212 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
n this paper we investigate systems of linear integral equations in the space ${{\Bbb G}^n_L}$ of $n$-vector valued functions which are regulated on the closed interval ${[0,1]}$ (i.e. such that can have only discontinuities of the first kind in ${[0,1]}$) and left-continuous in the corresponding open interval $(0,1).$ In particular, we are interested in systems of the form
x(t) - A(t)x(0) - \int_0^1B(t,s)[\text{d} x(s)] = f(t), where $f\in{{\Bbb G}^n_L}$, the columns of the $n\times n$-matrix valued function $A$ belong to ${{\Bbb G}^n_L}$, the entries of $B(t,\ldotp)$ have a bounded variation on ${[0,1]}$ for any $t\in{[0,1]}$ and the mapping $t\in{[0,1]} \to B(t,\ldotp)$ is regulated on ${[0,1]}$ and left-continuous on $(0,1)$ as the mapping with values in the space of $n\times n$-matrix valued functions of bounded variation on ${[0,1]}.$ The integral stands for the Perron-Stieltjes one treated as the special case of the Kurzweil-Henstock integral. \endgraf In particular, we prove basic existence and uniqueness results for the given equation and obtain the explicit form of its adjoint equation. A special attention is paid to the Volterra (causal) type case. It is shown that in that case the given equation possesses a unique solution for any right-hand side from ${{\Bbb G}^n_L}$, and its representation by means of resolvent operators is given. \endgraf The results presented cover e.g. the results known for systems of linear generalized differential equations
x(t) - x(0) - \int_0^t [\text{d} A(s)] x(s) = f(t) - f(0) as well as systems of Stieltjes integral equations
x(t) - \int_0^1 [\text{d}_s K(t,s)] x(s) = g(t) \quad\text{or}\quad x(t) - \int_0^t [\text{d}_s K(t,s)] x(s) = g(t). (English) |
Keyword:
|
regulated function |
Keyword:
|
Fredholm-Stieltjes integral equation |
Keyword:
|
Volterra-Stieltjes integral equation |
Keyword:
|
compact operator |
Keyword:
|
Perron-Stieltjes integral |
Keyword:
|
Kurzweil-Henstock integral |
Keyword:
|
existence |
Keyword:
|
uniqueness |
Keyword:
|
resolvent operators |
Keyword:
|
Kurzweil integral |
MSC:
|
26A39 |
MSC:
|
26A42 |
MSC:
|
45A05 |
MSC:
|
45B05 |
MSC:
|
45D05 |
MSC:
|
45F05 |
MSC:
|
47G10 |
idZBL:
|
Zbl 0941.45001 |
idMR:
|
MR1673977 |
DOI:
|
10.21136/MB.1998.126306 |
. |
Date available:
|
2009-09-24T21:30:48Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/126306 |
. |
Reference:
|
[Au] Aumann G.: Reelle Funktionen.Springer-Verlag, Berlin, 1909. MR 0061652 |
Reference:
|
[Ba] Barbanti L.: Linear Volterra-Stieltjes integral equations and control.Equadiff 82. Proceedings, Würzburg 1982. Lecture Notes in Mathematics 1017, Springer-Verlag, Berlin, 1983, pp. 07-72. MR 0726569 |
Reference:
|
[Fi] Fichmann L.: Volterra-Stieltjes integral equations and equations of the neutral type.Thesis, University of Sao Paulo, 1984. (In Portuguese.) |
Reference:
|
[Fra] Fraňková D.: Regulated functions.Math. Bohem. 116 (1991), 20-59. MR 1100424 |
Reference:
|
[Hi] Hildebrandt T. H.: Introduction to the Theory of Integration.Academic Press, New York, 1903. MR 0154957 |
Reference:
|
[Hö1] Hönig Gh. S.: Volterra-Stieltjes Integral Equations.Mathematics Studies 16, North Holland, Amsterdam, 1975. |
Reference:
|
[Hö2] Hönig, Ch. S.: Volterra-Stieltjes integral equations.Functional Differential Equations and Bifurcation, Proceedings of the Sao Carlos Conference 1979. Lecture Notes in Mathematics 799, Springer-Verlag, Berlin, 1980, pp. 173-216. MR 0585488 |
Reference:
|
[Ku1] Kurzweil J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czechoslovak Math. J. 7 (82) (1957), 418-449. Zbl 0090.30002, MR 0111875 |
Reference:
|
[Ku2] Kurzweil J.: Nichtabsolut konvergente Integrale.Teubner, Leipzig, 1980. Zbl 0441.28001, MR 0597703 |
Reference:
|
[Sa] Saks S: Theory of the Integral.Monografie Matematyczne. Warszawa, 1937. Zbl 0017.30004 |
Reference:
|
[Sche] Schechter M.: Principles of Functional Analysis.Academic Press, New York, 1973. MR 0467221 |
Reference:
|
[Sch1] Schwabik Š.: Generalized Differential Equations (Fundamental Results).Rozpravy ČSAV, Řada MPV, 95 (6). Academia, Praha. 1985. Zbl 0594.34002, MR 0823224 |
Reference:
|
[Sch2] Schwabik Š.: On the relation between Young's and Kurzweil's concept of Stieltjes integral.Časopis Pěst. Mat. 98 (1973), 237-251. Zbl 0266.26006, MR 0322113 |
Reference:
|
[SchЗ] Schwabik Š.: Generalized Ordinary Differential Equations.World Scientific, Singapore, 1992. Zbl 0781.34003, MR 1200241 |
Reference:
|
[Sch4] Schwabik Š.: Linear operators in the space of regulated functions.Math. Bohem. 117 (1992), 79-92. Zbl 0790.47023, MR 1154057 |
Reference:
|
[STV] Schwabik Š., Tvrdý M., Vejvoda. O.: Differential and Integral Equations: Boundary Value Problems and Adjoints.Academia and D. Reidel, Praha-Dordrecht, 1979. Zbl 0417.45001, MR 0542283 |
Reference:
|
[Tv1] Tvrdý M.: Boundary value problems for generalized linear integro-differential equations with left-continuous solutions.Časopis Pěst. Mat. 99 (1974), 147-157. MR 0405041 |
Reference:
|
[Tv2] Tvrdý M.: Regulated functions and the Perron-Stieltjes integral.Časopis Pӗst. Mat. 114 (1989), 187-209. MR 1063765 |
Reference:
|
[Wa] Ward A. J.: The Perron-Stieltjes integral.Math. Z. 41 (1936), 578-604. Zbl 0014.39702, MR 1545641, 10.1007/BF01180442 |
. |