[1] Cuellar, J., Dynin, A., Dynin, S.: 
Fredholm operator families - I. Integral Equations Operator Theory (1983), 853–862. 
MR 0719108 | 
Zbl 0522.47010[2] Donaldson, S. K., Kronheimer, P. B.: 
The Geometry of Four-Manifolds. Oxford University Press, 2001. 
MR 1079726[3] Dupré, M. J., Glazebrook, J. F.: 
Infinite dimensional manifold structures on principal bundles. J. Lie Theory 10 (2000), 359–373. 
MR 1774866[6] Gualtieri, M.: Generalized complex geometry. 2007, math/0703298.
[7] Gualtieri, M.: Generalized complex geometry. Ph.D. thesis, Oxford University, 2004.
[8] Gukov, S., Witten, E.: Gauge Theory, Ramification, And The Geometric Langlands Program. hep-th/0612073.
[11] Kobayashi, S.: 
Differential Geometry of Complex Vector Bundles. Iwanani Shoten, Publishers and Princeton University Press, 1987. 
MR 0909698 | 
Zbl 0708.53002[12] Lübke, M., Okonek, C.: 
Moduli spaces of simple bundles and Hermitian-Einstein connections. Math. Ann. 276 (1987), 663–674. 
DOI 10.1007/BF01456994 | 
MR 0879544[13] Lübke, M., Teleman, A.: 
The Kobayashi-Hitchin Correspondence. World Scientific, 1995. 
MR 1370660