Previous |  Up |  Next


invariant tensor; general linear group; graph
We describe a correspondence between $\mbox {GL}_n$-invariant tensors and graphs. We then show how this correspondence accommodates various types of symmetries and orientations.
[1] Fuks, D. B.: Cohomology of infinite dimensional Lie algebras. (Kogomologii beskonechnomernykh algebr Li). Kogomologii beskonechnomernykh algebr Li), Nauka, Moskva, 1984. MR 0772201 | Zbl 0592.17011
[2] Kauffman, L. H.: Knots and Physics. Series on Knots and Everything , Vol. 1, World Scientific, 1991. MR 1141156 | Zbl 0733.57004
[3] Kolář, I, Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry. Springer-Verlag, Berlin, 1993. MR 1202431
[4] Kontsevich, M.: Formal (non)commutative symplectic geometry. The Gel'fand mathematics seminars 1990–1992, Birkhäuser, 1993. MR 1247289 | Zbl 0821.58018
[5] Markl, M.: Natural differential operators and graph complexes. Preprint math.DG/0612183, December 2006. To appear in Differential Geometry and its Applications. MR 2503978 | Zbl 1165.51005
[6] Markl, M., Merkulov, S. A., Shadrin, S.: Wheeled PROPs, graph complexes and the master equation. Preprint math.AG/0610683, October 2006. To appear in Journal of Pure and Applied Algebra. MR 2483835
[7] Weyl, H.: The classical groups. Their invariants and representations. Fifteenth printing. Princeton University Press, 1997. MR 1488158
Partner of
EuDML logo