Previous |  Up |  Next

Article

Title: Principal element lattices (English)
Author: Anderson, D. D.
Author: Jayaram, C.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 46
Issue: 1
Year: 1996
Pages: 99-109
.
Category: math
.
MSC: 06B05
MSC: 06F10
MSC: 16Y60
idZBL: Zbl 0898.06008
idMR: MR1371692
DOI: 10.21136/CMJ.1996.127274
.
Date available: 2009-09-24T09:54:21Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/127274
.
Reference: [1] D. D. Anderson: Abstract commutative ideal theory without chain condition.Algebra Universalis 6 (1976), 131–145. Zbl 0355.06022, MR 0419310, 10.1007/BF02485825
Reference: [2] D. D. Anderson, C. Jayaram and F. Alarcon: Some results on abstract commutative ideal theory.Studia Sci. Math. Hung 30 (1995), 1–26. MR 1318850
Reference: [3] D. D. Anderson, J. Matijevic and W. Nichols: The Krull Intersection Theorem II.Pacific J. Math. 66 (1976), 15–22. MR 0435062, 10.2140/pjm.1976.66.15
Reference: [4] R. P. Dilworth: Abstract commutative ideal theory.Pacific J. Math. 12 (1962), 481–498. Zbl 0111.04104, MR 0143781, 10.2140/pjm.1962.12.481
Reference: [5] E. W. Johnson and J. A. Johnson: $P$-lattices as ideal lattices and submodule lattices.Commen. Math. Univ. San. Pauli. 38 (1989), 21–27. MR 0998864
Reference: [6] E. W. Johnson and J. P. Lediaev: Join principal elements and the principal ideal theorem.Michigan Math. J. 17 (1970), 255–256. MR 0263710, 10.1307/mmj/1029000473
Reference: [7] J. L. Mott: Multiplication rings containing only finitely many minimal prime ideals.Jour. Sci. Hiroshima. Univ. Ser. A-I. 33 (1969), 73–83. Zbl 0184.29202, MR 0246866
Reference: [8] R. Padamanabhan and H. Subramanian: Ideals in semirings.Math. Japonicae 13 (1968), 123–128. MR 0245626
.

Files

Files Size Format View
CzechMathJ_46-1996-1_10.pdf 1.071Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo