Previous |  Up |  Next

Article

Title: On the equation $x_{ap}^{(n)}=f(t,x)$ (English)
Author: Bugajewski, Dariuss
Author: Wójtowicz, Daria
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 46
Issue: 2
Year: 1996
Pages: 325-330
.
Category: math
.
MSC: 26A24
MSC: 34A12
idZBL: Zbl 0870.34001
idMR: MR1388620
DOI: 10.21136/CMJ.1996.127294
.
Date available: 2009-09-24T09:57:05Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/127294
.
Reference: [1] N. Aronszajn: Le correspondant topologique de l’unicité dans la theorié des équations différentielles.Ann. of Math. 43 (1942), 730–748. Zbl 0061.17106, MR 0007195, 10.2307/1968963
Reference: [2] D. Bugajewski and S. Szufla: On the Aronszajn property for differential equations and the Denjoy integral.(to appear). MR 1384852
Reference: [3] P.S. Bullen and D.N. Sharkel: On the solution of $(y/x)_{ap}=f(x,y)$.J. Math. Anal. Appl. 127 (1987), 365–376. MR 0915063
Reference: [4] P.S. Bullen and R. Výborný: Some applications of a theorem of Marcinkiewicz.Canad. Math. Bull. 34 (1991), 165–174. MR 1113292, 10.4153/CMB-1991-027-x
Reference: [5] V.G. Celidze and A.G. Dzvarsheishvili: Theory of the Denjoy Integral and Some of Its Applications.Tbilisi, 1987. (Russian)
Reference: [6] T.S. Chew and F. Flordeliza: On $x^{\prime }=f(t,x)$ and Henstock-Kurzweil integrals.Differential and Integral Equations 4 (1991), no. 3, 861–868. MR 1108065
Reference: [7] R. Henstock: Definitions of Riemann type of the variational integral.Proc. London Math. Soc. 3 (1961), no. 11, 402–418. MR 0132147
Reference: [8] R. Henstock: Lectures on the Theory of Integration.World Scientific, Singapore, 1988. Zbl 0668.28001, MR 0963249
Reference: [9] J. Kurzweil: Generalized ordinary differential equations and continuous dependence on a parameter.Czech. Math. J. 7 (1957), 618–648. Zbl 0090.30002, MR 0111875
Reference: [10] S. Saks: Theory of the Integral.Monografie Matematyczne, Warszawa, Lwów, 1937. Zbl 0017.30004
Reference: [11] Š. Schwabik: The Perron integral in ordinary differential equations.Differential and Integral Equations 6 (1993), no. 4, 863–882. Zbl 0784.34006, MR 1222306
Reference: [12] G. Vidossich: A fixed-point theorem for function spaces.J. Math. Anal. and Appl. 36 (1971), 581–587. Zbl 0194.44903, MR 0285945, 10.1016/0022-247X(71)90040-0
.

Files

Files Size Format View
CzechMathJ_46-1996-2_12.pdf 851.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo