Previous |  Up |  Next

Article

References:
[1] H. Attouch, A. Damlamian: On multivalued evolution equations in Hilbert spaces. Israel J. Math. 12 (1972), 373–390. DOI 10.1007/BF02764629 | MR 0346609
[2] E.P. Avgerinos, N.S. Papageorgiou: Nonconvex perturbations of evolution equations with m-dissipative operators in Banach spaces. Comment Math. Univ. Carolinae 30 (1989), 657–664. MR 1045894
[3] P. Baras: Compacité de I’operateur $f \rightarrow u$ solution d’une équation non-lineaire $\frac{u}{t} + A u \ni f$. C.R. Acad. Sci. Paris, t. 286 (1978), 1113–1116. MR 0493554
[4] V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publishing, Leyden, The Netherlands, 1976. MR 0390843 | Zbl 0328.47035
[5] M. Benamara: Points extremaux multi-applications et fonctionelles integrales. These du 3ème cycle, Université de Grenoble, France, 1975.
[6] P. Benilan: Solutions integrales d’equations d’evolution dans un espace de Banach. C.R. Acad. Sci. Paris, t. 274 (1972), 47–50. MR 0300164 | Zbl 0246.47068
[7] A. Bressan, G. Colombo: Extension and selections of maps with decomposable values. Studia Math. 90 (1988), 69–86. MR 0947921
[8] A. Cellina, M. Marchi: Nonconvex perturbations of maximal monotone inclusions. Israel J. Math. 46 (1983), 1–11. DOI 10.1007/BF02760619 | MR 0727019
[9] J. Diestel, J. Uhl: Vector measures. Math Surveys, A.M.S., Providence R.I. 15 (1977). MR 0453964
[10] R. Holmes: Geometric Functional Analysis and its Applications, Graduate Texts in Math, Vol. 24. Springer Verlag, New York, 1975. MR 0410335
[11] M. Kisielewicz: Differential Inclusions and Optimal Control. Kluwer Academic Publishers, Dodrecht, The Netherlands, 1991. MR 1135796
[12] N.S. Papageorgiou: On measurable multifunctions with applications to random multivalued equation. Math. Japonica 32 (1987), 437–464. MR 0914749
[13] N.S. Papageorgiou: Weak convergence of random sets in Banach spaces. J. Math. Anal. Appl. 164 (1992), 571–589. DOI 10.1016/0022-247X(92)90136-2 | MR 1151056 | Zbl 0784.46010
[14] A.A. Tolstonogov: Extremal selections of multivalued mappings and the “bang-bang” principle for evolution inclusions. Soviet Math. Dokl. 43 (1991), 481–485. MR 1121349 | Zbl 0784.54024
[15] E. Zeidler: Nonlinear Functional Analysis and its Applications II. Springer Verlag, New York, 1990. MR 0816732 | Zbl 0684.47029
Partner of
EuDML logo