Previous |  Up |  Next

Article

Title: On the degrees of permutability of subregular varieties (English)
Author: Barbour, Graham D.
Author: Raftery, James G.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 47
Issue: 2
Year: 1997
Pages: 317-325
.
Category: math
.
MSC: 06F35
MSC: 08A30
MSC: 08B05
idZBL: Zbl 0927.08001
idMR: MR1452422
.
Date available: 2009-09-24T10:05:16Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127358
.
Reference: [kn:BaR1] G. D. Barbour and J. G. Raftery: Ideal determined varieties have unbounded degrees of permutability.Quaestiones Math. 20 (1997), in print. MR 1625526, 10.1080/16073606.1997.9632225
Reference: [kn:BR95] W.J. Blok and J.G. Raftery: On the quasivariety of BCK-algebras and its subvarieties.Algebra Universalis 33 (1995), 68–90. MR 1303632, 10.1007/BF01190766
Reference: [kn:Cha81] I. Chajda: Distributivity and modularity of lattices of tolerance relations.Algebra Universalis 12 (1981), 247–255. Zbl 0469.08003, MR 0608668, 10.1007/BF02483883
Reference: [kn:CR83] I. Chajda and J. Rachunek: Relational characterizations of permutable and $n$-permutable varieties.Czechoslovak Math. J. 33 (1983), 505–508. MR 0721079
Reference: [kn:Csa70] B. Csákány: Characterizations of regular varieties.Acta Sci. Math. (Szeged) 31 (1970), 187–189. MR 0272697
Reference: [kn:DMS87] B.A. Davey, K.R. Miles, and V.J. Schumann: Quasi-identities, Mal’cev conditions and congruence regularity.Acta. Sci. Math. (Szeged) 51 (1987), 39–55. MR 0911557
Reference: [kn:Dud83b] J. Duda: On two schemes applied to Mal’cev type theorems.Annales Universitatis Scientiarum Budapestiensis. Sectio Mathematica 26 (1983), 39–45. Zbl 0518.08002, MR 0719774
Reference: [kn:Dud87] J. Duda: Mal’cev conditions for varieties of subregular algebras.Acta Sci. Math. (Szeged) 51 (1987), 329–334. Zbl 0647.08002, MR 0940937
Reference: [kn:Fic68] K. Fichtner: Varieties of universal algebras with ideals.Mat. Sbornik 75(117) (1968), 445–453. (Russian) Zbl 0213.29602, MR 0222001
Reference: [kn:Fic70] K. Fichtner: Eine Bermerkung über Mannigfaltigkeiten universeller Algebren mit Idealen.Monatsh. d. Deutsch. Akad. d. Wiss. (Berlin) 12 (1970), 21–25. MR 0256968
Reference: [kn:Hag73] J. Hagemann: On regular and weakly regular congurences.Technical report, Technische Hoschschule Darmstadt, June 1973, (Preprint No. 75).
Reference: [kn:HM73] J. Hagemann and A. Mitschke: On $n$-permutable congruences.Algebra Universalis 3 (1973), 8–12. MR 0330010, 10.1007/BF02945100
Reference: [kn:Idz83] P.M. Idziak: On varieties of BCK-algebras.Math. Japonica 28 (1983), 157–162. Zbl 0518.06015, MR 0692565
Reference: [kn:Idz84a] P.M. Idziak: Lattice operation in BCK-algebras.Math. Japonica 29 (1984), 839–846. Zbl 0555.03030, MR 0803438
Reference: [kn:Idz84b] P.M. Idziak: Filters and congruence relations in BCK-semilattices.Math. Japonica 29 (1984), 975–980. Zbl 0555.03032, MR 0803455
Reference: [kn:IT78] K. Iséki and S. Tanaka: An introduction to the theory of BCK-algebras.Math. Japonica 23 (1978), 1–26. MR 0500283
Reference: [kn:Raf94] J. G. Raftery: Ideal determined varieties need not be congruence 3-permutable.Algebra Universalis 31 (1994), 293–297. Zbl 0803.08001, MR 1259356, 10.1007/BF01236524
Reference: [kn:Wil70] R. Wille: Kongruenzklassengeometrien, volume 113 of Lecture Notes in Mathematics.Springer-Verlag, Berlin-Heidelberg-New York, 1970. MR 0262149
Reference: [kn:Wro83a] A. Wroński: BCK-algebras do not form a variety.Math. Japonica 28 (1983), 211–213. MR 0699585
.

Files

Files Size Format View
CzechMathJ_47-1997-2_8.pdf 1.610Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo