Previous |  Up |  Next

Article

Title: Štefan Schwarz (1914–1996) (English)
Author: Riečan, Beloslav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 47
Issue: 2
Year: 1997
Pages: 375-382
.
Category: math
.
MSC: 01A70
idZBL: Zbl 0927.01019
idMR: MR1452426
.
Date available: 2009-09-24T10:06:08Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127362
.
Reference: [1] : On the reducibility of polynomials over an algebraic number field modulo of a prime ideal.Časopis pěst. mat. fyz. 68 (1939), 112–127. (German)
Reference: [2] : A contribution to the reducibility of a polynomial in the theory of congruences.Věstník Král. české spol. nauk 7 (1939), 1–9. (French)
Reference: [3] : On the number of roots and irreducible factors of polynomials over a finite field.Časopis pěst. mat. fyz. 69 (1949), 128–146. (French)
Reference: [4] : On a theorem of S. Lubelski.Časopis pěst. mat. fyz. 69 (1940), 147–150. (German)
Reference: [5] : A contribution to the arithmetic of finite fields.Prírodovedecká príloha Technického obzoru slovenského I (1940), 75–82. (Slovak)
Reference: [6] : A contribution to the theory of congruences.Prírodovedecká príloha Technického obzoru slovenského II (1941), 89–92, 95–100. (Slovak)
Reference: [7] : A contribution to the theory of Galois‘s fields.Prírodovedecká príloha Technického obzoru slovenského III (1942), 1–4. (Slovak)
Reference: [8] : Theory of semigroups.Sborník prác Prírodovedeckej fakulty Slovenskej univerzity VI, Bratislava, 1943, pp. 64. (Slovak)
Reference: [9] : A hyperkomplex proof of the Jordan-Kronecker’s Principle of reduction.Časopis pěst. mat. fys. 71 (1946), 17–21. MR 0020077
Reference: [10] : A contribution to the reducibility of binomial congruences.Časopis pěst. mat. fys. 71 (1946), 21–32. (Czech)
Reference: [11] : On the extension of the Jordan-Kronecker’s Principle of reduction for inseparable polynomials.Časopis pěst. mat. fys. 73 (1947), 61–64. Zbl 0036.29902, MR 0022839
Reference: [12] : On Waring’s Problem for finite fields.Quart. J. Math., Oxford Ser. 19 (1948), 123–128. Zbl 0030.11302, MR 0024941
Reference: [13] : On generalization of Jordan-Kronecker’s Principle of reduction.Věstník Král. české spol. nauk 2 (1948), 1–29. MR 0026639
Reference: [14] : On the equation $a_{1}x_{1}^{k}+a_{2}x_{2}^{k}\ldots +a_{k}x_{k}^{k}+b\,=\,0$ in finite fields.Quart. J. Math., Oxford Ser. 19 (1948), 160–164. MR 0026065
Reference: [15] : A contribution to the theory of cyclic fields.Sborník prác SVŠT, Bratislava, 1948, pp. 7. (Slovak)
Reference: [16] : On the reducibility of binomial congruences and the least bound of an integer belonging to a given exponent (mod $p$).Časopis pěst. mat. fys. 74 (1949), 1–17.
Reference: [17] : On universal forms in finite fields.Časopis pěst. mat. fys. 75 (1950), 45–50. Zbl 0036.29203, MR 0035306
Reference: [18] : On the generalization of the notion of a group.Časopis pěst. mat. fys. 74 (1949), 95–113. (Slovak)
Reference: [19] : On equations of the form $ c_{1}x_{1}^{k_1}+c_{2}x_{2}^{k_2}+\ldots +c_{s}x_{s}^{k_s}\,=\,c$ in finite fields.Časopis pěst. mat. fys. 74 (1949), 175–176. (Slovak)
Reference: [20] : On the structure of finite semigroups without zeros.Czechoslovak Math. J. 1 (76) (1951), 51–65. (Russian)
Reference: [21] : On the structure of simple semigroups without zero.Czechoslovak Math. J. 1 (76) (1951), 41–53. Zbl 0045.15608, MR 0048428
Reference: [22] : On semigroups having a kernel.Czechoslovak Math. J. 1 (76) (1951), 259–301. (Russian) MR 0051221
Reference: [23] : On semigroups having a kernel.Czechoslovak Math. J. 1 (76) (1951), 229–264. MR 0051221
Reference: [24] : On the theory of periodic semigroups.Czechoslovak Math. J. 3 (78) (1953), 7–21. (Russian)
Reference: [25] : On maximal ideals in the theory of semigroups I.Czechoslovak Math. J. 3 (78) (1953), 139–153. (Russian) MR 0061591
Reference: [26] : Maximal ideals and the structure of semigroups.Mat.-fyz. čas. Slovenskej akad. vied 3 (1953), 17–39. (Slovak) MR 0064784
Reference: [27] : On maximal ideals in the theory of semigroups II.Czechoslovak Math. J. 3 (78) (1953), 365–383. (Russian) MR 0061592
Reference: [28] : The theory of characters of commutative semigroups.Czechoslovak Math. J. 4 (79) (1954), 219–247. (Russian) Zbl 0059.02003, MR 0069815
Reference: [29] : Characters of commutative semigroups as class funcions.Czechoslovak Math. J. 4 (79) (1954), 291–295. (Russian) MR 0069816
Reference: [30] : On a Galois conection in the theory of characters of semigroups.Czechoslovak Math. J. 4 (79) (1954), 296–313. (Russian) MR 0069817
Reference: [31] : Characters of commutative semigroups.Proceedings of the International Congress of Mathematicians 1954, Vol. 1, Amsterdam, 1957, pp. 438.
Reference: [32] : On Hausdorff bicompact semigroups.Czechoslovak Math. J. 5 (80) (1955), 1–23. (Russian) Zbl 0068.02301, MR 0074769
Reference: [33] : Topological semigroups with one-sided units.Czechoslovak Math. J. 5 (80) (1955), 153–163. (Russian) Zbl 0068.02402, MR 0074771
Reference: [34] : Characters of bicompact semigroups.Czechoslovak Math. J. 5 (80) (1955), 24–28. (Russian) MR 0074770
Reference: [35] : A remark to the theory of bicompact semigroups.Mat.-fyz. čas. Slovenskej akad. vied 5 (1955), 86–89. (Slovak) MR 0077872
Reference: [36] : On magnifying elements in the theory of semigroups.Doklady Akad. Nauk SSSR 102 (1955), no. 4, 697–698. (Russian) MR 0071710
Reference: [37] : On a type of universal forms in discretely valued fields.Acta Sci. Math. (Szeged) XVII (1956), no. 1–2, 5–29. Zbl 0072.03504, MR 0081918
Reference: [38] : The theory of characters of commutative Hausdorff bicompact semigroups.Czechoslovak Math. J. 6 (81) (1956), 330–364. MR 0092098
Reference: [39] : Once more on quadratic polynomials with prime values.Časopis pěst. mat. 81 (1956), 241–243 (with Ján Mařík). (Czech)
Reference: [40] : On the reducibility of polynomials over a finite field.Quart J. Math., Oxford Ser. 7 (1956), 110–124. Zbl 0071.01703, MR 0096679, 10.1093/qmath/7.1.110
Reference: [41] : Semigroups satisfying some weakened forms of the cancellation laws.Mat.–fyz. čas. Slovenskej akad. vied 6 (1956), 149–158. (Slovak) MR 0091281
Reference: [42] : On the existence of invariant measures on certain types of bicompact semigroups.Czechoslovak Math. J. 7 (82) (1957), 165–182. (Russian) MR 0089364
Reference: [43] : On the structure of the semigroup of measures on finite semigroups.Czechoslovak Math. J. 7 (82) (1957), 358–373. MR 0095215
Reference: [44] : An elementary semigroup theorem and congruence relation of Rédei.Acta Sci. Math. (Szeged) XIX (1958), no. 1–2, 1–4.
Reference: [45] : On the multiplicative semigroup of conguence classes (mod $m$).Mat.–fyz. čas. Slovenskej akad. vied 8 (1958), 136–150 (with Bohumír Parízek). (Slovak) MR 0103938
Reference: [46] : Remarks on compact semigroups.Colloq. Math. (Wroclaw) VI (1958), 265–270 (with Jan Los). Zbl 0086.02203, MR 0100649
Reference: [47] : On totally noncommutative semigroups.Mat.-fyz. čas. Slovenskej akad. vied 9 (1959), 92–100 (with Dorota Krajňáková). (Russian) MR 0123629
Reference: [48] : On dual semigroups.Czechoslovak Math. J. 10 (85) (1960), 201–230. Zbl 0098.01602, MR 0117294
Reference: [49] : A theorem on normal semigroups.Czechoslovak Math. J. 10 (85) (1960), 197–200. Zbl 0098.01704, MR 0116075
Reference: [50] : Semigroups, in which every proper subideal is a group.Acta Sci. Math. (Szeged) XXI (1960), no. 3–4, 125–134. Zbl 0095.01406, MR 0130922
Reference: [51] : On a class of polynomials over a finite field.Mat.-fyz. čas. Slovenskej akad. vied 10 (1960), 68–80. (Russian) Zbl 0104.01603, MR 0130245
Reference: [52] : On the number of irreducible factors of a polynomial over a finite field.Czechoslovak Math. J. 11 (86) (1961), 213–225. (Russian) Zbl 0102.25303, MR 0123558
Reference: [53] : Semicharacters of the multiplicative semigroup of integers modulo $m$.Mat.-fyz. čas. Slovenskej akad. vied 11 (1961), 63–74 (with Bohumír Parízek). MR 0139682
Reference: [54] : Subsemigroups of simple semigroups.Czechoslovak Math. J. 13 (88) (1963), 226–239. Zbl 0122.02402, MR 0158014
Reference: [55] : Probabilities on non-commutative semigroups.Czechoslovak Math. J. 13 (88) (1963), 372–426. Zbl 0137.35302, MR 0160191
Reference: [56] : Probability measures on non-commutative semigroups.General Topology and its Relations to Modern Analysis and Algebra, Proceedings of the Symposium held in Prague in September 1961, pp. 312–315. Zbl 0118.11601
Reference: [57] : Cyclic matrices and algebraic equations over a finite field..Mat.-fyz. čas. Slovenskej akad. vied 12 (1962), 38–48 (with Kornélia Horáková). (Russian) Zbl 0108.01502, MR 0159814
Reference: [58] : A remark on algebraic equations over a finite field.Mat.-fyz. čas. Slovenskej akad. vied 12 (1962), 224–229. (Russian) MR 0157963
Reference: [59] : Convolution semigroup of measures on compact non-commutative semigroups.Czechoslovak Math. J. 14 (89) (1964), 95–115. MR 0169969
Reference: [60] : Product decomposition of idempotent measures on compact semigroups.Czechoslovak Math. J. 14 (89) (1964), 121–124. Zbl 0151.18902, MR 0169970
Reference: [61] : Homomorphisms of completely simple semigroups onto a group.Mat.-fyz. čas. Slovenskej akad.vied 12 (1962), 293–300. MR 0158942
Reference: [62] : On a system of congruences. A remark on the preceding paper of J.Sedláček.Mat.-fyz. čas. Slovenskej akad. vied 13 (1963), 103–104. (Slovak) MR 0157931
Reference: [63] : A semigroup treatment of some theorems on non-negative matrices.Czechoslovak Math. J. 15 (90) (1965), 212–229. Zbl 0232.20139, MR 0175919
Reference: [64] : On the structure of the semigroup of stochastic matrices.Publ. of the Math. Inst. Hungarian Acad. Vol. IX, Series A, Fasc. 3 (1965), 297–311. MR 0188337
Reference: [65] : On powers of non-negative matrices.Mat.-fyz. časopis Slovenskej akad. vied 15 (1965), 215–228. Zbl 0158.28302, MR 0191987
Reference: [66] : A remark to the theory of non-negative matrices.Sibir. Math. J. 6 (1965), 207–211. (Russian) MR 0171791
Reference: [67] : A new approach to some problems in the theory of non-negative matrices.Czechoslovak Math. J. 16 (91) (1966), 274–284. Zbl 0232.20140, MR 0201452
Reference: [68] : New kinds of theorems on non-negative matrices.Czechoslovak Math. J. 16 (91) (1966), 285–295. MR 0201453
Reference: [69] : Some estimates in the theory of non-negative matrices.Czechoslovak Math. J. 17 (92) (1967), 399–407. Zbl 0159.32603, MR 0217101
Reference: [70] : A note on the structure of the semigroup of doubly-stochastic matrices.Mat. čas. 17 (1967), 308–316. Zbl 0157.04902, MR 0241451
Reference: [71] : On the index of imprimitivity of a non-negative matrix.Acta Sci. Math. (Szeged) 28 (1967), 185–189. Zbl 0232.15004, MR 0214610
Reference: [72] : Algebraic considerations on powers of stochastic matrices.Mat. čas. 18 (1968), 218–228. Zbl 0176.30506, MR 0245605
Reference: [73] : Prime ideals and maximal ideals in semigroups.Czechoslovak Math. J. 19 (94) (1969), 72–79. Zbl 0176.29503, MR 0237680
Reference: [74] : On the semigroup of binary relations on a finite set.Czechoslovak Math. J. 20 (95) (1970), 632–679. Zbl 0228.20034, MR 0296190
Reference: [75] : On a sharp estimate in the theory of binary relations on a finite set.Czechoslovak Math. J. 20 (95) (1970), 703–714. MR 0282862
Reference: [76] : On idempotent relations on a finite set.Czechoslovak Math. J. 20 (95) (1970), 696–702. MR 0268047
Reference: [77] : Any $0$-simple dual semigroup is completely $0$-simple.Semigroup Forum 2 (1971), 90–92. MR 0281819, 10.1007/BF02572281
Reference: [78] : On the structure of dual semigroups.Czechoslovak Math. J. 21 (96) (1971), 461–483. Zbl 0232.20116, MR 0292982
Reference: [79] : The semigroup of fully indecomposable relations and Hall relations.Czechoslovak Math. J. 23 (98) (1973), 151–163. Zbl 0261.20057, MR 0316612
Reference: [80] : A note on small categories with zero.Acta Sci. Math. (Szeged) 35 (1973), 161–164. Zbl 0273.20048, MR 0330334
Reference: [81] : Summs of powers of binary relations.Mat. čas. 24 (1974), 161–171. (Russian) MR 0363909
Reference: [82] : Circulant Boolean relation matrices.Czechoslovak Math. J. 24 (99) (1974), 252–253. Zbl 0329.20049, MR 0348018
Reference: [83] : The ideal structure of $C$-semigroups.Czechoslovak Math. J. 27 (102) (1977), 313–338. Zbl 0376.20038, MR 0439961
Reference: [84] : The semigroup of circulant Boolean matrices.Czechoslovak Math. J. 26 (101) (1976), 632–635 (with Kim H. Butler). Zbl 0347.20037, MR 0430121
Reference: [85] : A counting theorem in the semigroup of circulant Booleant matrices.Czechoslovak Math. J. 27 (102) (1977), 504–510. MR 0457603
Reference: [86] : Semigroups containing maximal ideals.Math. Slovaca 28 (1978), 157–168. Zbl 0378.20047, MR 0526854
Reference: [87] : Intersections of maximal ideals in semigroups.Semigroup Forum 12 (1976), 367–372. Zbl 0337.20025, MR 0414760, 10.1007/BF02195942
Reference: [88] : A theorem on binary relations and infinite regular languages.Semigroup Forum 17 (1979), 307–316. Zbl 0425.20053, MR 0532422, 10.1007/BF02194330
Reference: [89] : The Euler-Fermat Theorem for the semigroup of circulant Boolean matrices.Czechoslovak Math. J. 30 (105) (1980), 135–141. Zbl 0443.20053, MR 0565916
Reference: [90] : Infinite products on doubly stochastic matrices.Acta Math. Univ. Comenian. 39 (1980), 131–150. MR 0619269
Reference: [91] : The role of semigroups in the elementary theory of numbers.Math. Slovaca 31 (1981), 369–395. Zbl 0474.10002, MR 0637966
Reference: [92] : An unconventional problem in the elementary theory of numbers.Czechoslovak Math. J. 31 (106) (1981), 159–169. Zbl 0468.10002, MR 0604122
Reference: [93] : Extensions of Bauer’s identical congruences.Math. Slovaca 33 (1983), 209–224. Zbl 0519.10003, MR 0699091
Reference: [94] : Common consequents in directed graphs.Czechoslovak Math. J. 35 (110) (1985), 212–247. Zbl 0575.05041, MR 0787126
Reference: [95] : Fermat’s Theorem for matrices revisited.Math. Slovaca 35 (1985), 343–347. Zbl 0584.15007, MR 0820630
Reference: [96] : Right compositions of semigroups.Math. Slovaca 36 (1988), 3–14. MR 0832365
Reference: [97] : A combinatorial problem arising in finite Markov chains.Math. Slovaca 36 (1986), 199–210. Zbl 0615.15006, MR 0849711
Reference: [98] : Semigroups with a universally minimal left ideal.Acta Sci. Math. (Szeged) 52 (1988), 21–28. Zbl 0662.20046
Reference: [99] : Construction of normal bases in cyclic extensions of a field.Czechoslovak Math. J. 38 (113) (1988), 291–312. Zbl 0671.12006, MR 0946299
Reference: [100] : Irreducible polynomials over finite field with linearly independent roots.Math. Slovaca 38 (1988), 147–158. MR 0945368
Reference: [101] : Powers of subsets of finite semigroups.Semigroup Forum 51 (1995), 1–22. MR 1336994, 10.1007/BF02573616
Reference: [102] : Universal formulae of Euler-Fermat type for subsets of $Z_m$.Collect. Math. 46 (1995), no. 1–2, 183–193. MR 1366140
Reference: [103] : An explicit description of the set of all normal bases generators of a finite fields.Submitted to Czech. Math. J., pp. 13 (with Karol Nemoga).
Reference: [104] : On equations.1st ed., Prague, 1940, pp. 96. (Czech)
Reference: [105] : On equations.3rd ed., Prague, 1947, pp. 160. (Czech)
Reference: [106] : Algebraic numbers.Přírodovědecké nakl., Prague, 1950, pp. 292. (Slovak) Zbl 0041.01105
Reference: [107] : The theory of solutions of equations.Nakl. ČSAV, Prague, 1958, pp. 348. (Slovak)
Reference: [108] : The theory of solutions of equations.Vydavateľstvo SAV, 1st ed., Bratislava, 1967, pp. 440.
.

Files

Files Size Format View
CzechMathJ_47-1997-2_12.pdf 1.091Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo