Previous |  Up |  Next

Article

Title: Selfdistributive groupoids of small orders (English)
Author: Ježek, Jaroslav
Author: Kepka, Tomáš
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 47
Issue: 3
Year: 1997
Pages: 463-468
Summary lang: English
.
Category: math
.
Summary: After enumerating isomorphism types of at most five-element left distributive groupoids, we prove that a distributive groupoid with less than 81 elements is necessarily medial. (English)
Keyword: distributive
Keyword: medial
Keyword: groupoid
MSC: 20N02
MSC: 20N05
idZBL: Zbl 0901.20051
idMR: MR1461425
.
Date available: 2009-09-24T10:07:20Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127370
.
Reference: [1] R. El. Bashir and A. Drápal: Quasitrivial left distributive groupoids.Commentationes Math. Univ. Carolinae 35 (1994), 597–606. MR 1321230
Reference: [2] G. Bol: Gewebe und Gruppen.Math. Ann. 114 (1937), 414–431. Zbl 0016.22603, MR 1513147, 10.1007/BF01594185
Reference: [3] A. Drápal, T. Kepka and M. Musílek: Group conjugation has non-trivial LD-identities.Commentationes Math. Univ. Carolinae 35 (1994), 219–222. MR 1286567
Reference: [4] M. Hall, Jr.: Automorphisms of Steiner triple systems.IBM J. of Research Development 4 (1960), 460–471. Zbl 0100.01803, MR 0123961, 10.1147/rd.45.0460
Reference: [5] J. Ježek and T. Kepka: Atoms in the lattice of varieties of distributive groupoids.Colloquia Math. Soc. J. Bolyai 14. Lattice Theory, Szeged, 1974, pp. 185–194. MR 0485630
Reference: [6] J. Ježek, T. Kepka and P. Němec: Distributive groupoids.Rozpravy ČSAV, Řada mat. a přír. věd 91, Academia, Praha, 1981. MR 0672563
Reference: [7] T. Kepka: .Math. Nachr. 87 (1979), Distributive division groupoids 103–107. Zbl 0444.20067, MR 0536417
Reference: [8] T. Kepka: Notes on quasimodules.Commentationes Math. Univ. Carolinae 20 (1979), 229–247. Zbl 0413.20054, MR 0539554
Reference: [9] T. Kepka and P. Němec: .Czech. Math. J. 31 (1981), Commutative Moufang loops and distributive groupoids of small orders 633–669. MR 0631607
Reference: [10] J. P. Soublin: Étude algébrique de la notion de moyenne.J. Math. Pures et Appl. 50 (1971), 53–264. Zbl 0215.40401, MR 0291342
.

Files

Files Size Format View
CzechMathJ_47-1997-3_7.pdf 619.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo