Previous |  Up |  Next

Article

Title: Theorems of the alternative for cones and Lyapunov regularity of matrices (English)
Author: Cain, Bryan
Author: Hershkowitz, Daniel
Author: Schneider, Hans
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 47
Issue: 3
Year: 1997
Pages: 487-499
Summary lang: English
.
Category: math
.
Summary: Standard facts about separating linear functionals will be used to determine how two cones $C$ and $D$ and their duals $C^*$ and $D^*$ may overlap. When $T\:V\rightarrow W$ is linear and $K \subset V$ and $D\subset W$ are cones, these results will be applied to $C=T(K)$ and $D$, giving a unified treatment of several theorems of the alternate which explain when $C$ contains an interior point of $D$. The case when $V=W$ is the space $H$ of $n\times n$ Hermitian matrices, $D$ is the $n\times n$ positive semidefinite matrices, and $T(X) = AX + X^*A$ yields new and known results about the existence of block diagonal $X$’s satisfying the Lyapunov condition: $T(X)$ is an interior point of $D$. For the same $V$, $W$ and $D$, $ T(X)=X-B^*XB$ will be studied for certain cones $K$ of entry-wise nonnegative $X$’s. (English)
MSC: 15A24
MSC: 15A48
MSC: 15A57
MSC: 46A40
MSC: 46N10
MSC: 52A05
MSC: 90C48
idZBL: Zbl 0902.15011
idMR: MR1461427
.
Date available: 2009-09-24T10:07:37Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127372
.
Reference: [1] G. P. Barker, A. Berman, and R. J. Plemmons: Positive diagonal solutions to the Lyapunov equations.Lin. Multilin. Alg. 5 (1978), 249–256. MR 0469939, 10.1080/03081087808817203
Reference: [2] G. P. Barker, B. S. Tam, and Norbil Davila: A geometric Gordan-Stiemke theorem.Lin. Alg. Appl. 61 (1984), 83–89. MR 0755250, 10.1016/0024-3795(84)90023-5
Reference: [3] A. Ben-Israel: Linear equations and inequalities on finite dimensional, real or complex, vector spaces: A unified theory.Math. Anal. Appl. 27 (1969), 367–389. Zbl 0174.31502, MR 0242865, 10.1016/0022-247X(69)90054-7
Reference: [4] A. Berman: Cones, Matrices and Mathematical Programming.Lecture Notes in Economics and Mathematical Systems, Vol. 79, Springer-Verlag, 1973. Zbl 0256.90002, MR 0363463
Reference: [5] A. Berman and A. Ben-Israel: More on linear inequalities with application to matrix theory.J. Math. Anal. Appl. 33 (1971), 482–496. MR 0279117, 10.1016/0022-247X(71)90072-2
Reference: [6] A. Berman and R. C. Ward: ALPS: Classes of stable and semipositive matrices.Lin. Alg. Appl. 21 (1978), 163–174. MR 0480585, 10.1016/0024-3795(78)90040-X
Reference: [7] D. H. Carlson, D. Hershkowitz, and D. Shasha: Block diagonal semistability factors and Lyapunov semistability of block triangular matrices.Lin. Alg. Appl. 172 (1992), 1–25. MR 1168493, 10.1016/0024-3795(92)90015-3
Reference: [8] D. H. Carlson and H. Schneider: Inertia theorems for matrices: the semidefinite case.J. Math. Anal. Appl. 6 (1963), 430–436. MR 0148678, 10.1016/0022-247X(63)90023-4
Reference: [9] A. Ja. Dubovickii and A.A. Miljutin: Extremum problems with certain constraints.Soviet Math. 4 (1963), 759–762. MR 0162162
Reference: [10] D. Gale: The theory of linear economic models.McGraw-Hill, 1960. MR 0115801
Reference: [11] I.V. Girsanov: Lectures on Mathematical Theory of Extremum Problems [sic].Lecture Notes in Economics and Mathematical Systems, Vol. 67, Springer-Verlag, 1972. MR 0464021
Reference: [12] D. Hershkowitz and H. Schneider: Semistability factors and semifactors.Contemp. Math. 47 (1985), 203–216. MR 0828302, 10.1090/conm/047/828302
Reference: [13] J. L. Kelley, I. Namioka, et al.: Linear Topological Spaces.van Nostrand, 1963. MR 0166578
Reference: [14] A. N. Lyapunov: Le problème général de la stabilité du mouvement.Ann. Math. Studies 17 (1949), Princeton University Press.
Reference: [15] H. Nikaido: Convex Structures and Economic Theory.Mathematics in Science and Engineering, Vol. 51, Academic, 1968. Zbl 0172.44502, MR 0277233
Reference: [16] A. Ostrowski and H. Schneider: Some theorems on the inertia of general matrices.J. Math. Analysis and Appl. 4 (1962), 72–84. MR 0142555, 10.1016/0022-247X(62)90030-6
Reference: [17] R. T. Rockafellar: Convex Analysis.Princeton University Press, 1970. Zbl 0193.18401, MR 0274683
Reference: [18] B. D. Saunders and H. Schneider: Applications of the Gordan-Stiemke theorem in combinatorial matrix theory.SIAM Rev. 21 (1979), 528–541. MR 0545883, 10.1137/1021094
Reference: [19] O. Taussky: Matrices $C$ with $C^n \rightarrow 0$.J. Alg. 1 (1964), 1–10. Zbl 0126.02802, MR 0161865
Reference: [20] E. Zeidler: Nonlinear functional analysis and its applications III: Variational methods and optimation.Springer-Verlag, 1985. MR 0768749
.

Files

Files Size Format View
CzechMathJ_47-1997-3_9.pdf 1.178Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo