Title:
|
Some properties of third order differential operators (English) |
Author:
|
Cecchi, M. |
Author:
|
Došlá, Z. |
Author:
|
Marini, M. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
47 |
Issue:
|
4 |
Year:
|
1997 |
Pages:
|
729-748 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Consider the third order differential operator $L$ given by \[L(\cdot )\equiv \,\frac {1}{a_3(t)}\frac {\mbox{d}}{\mbox{d} t}\frac {1}{a_2(t)}\frac {\mbox{d}}{\mbox{d} t} \frac {1}{a_1(t)}\frac {\mbox{d}}{\mbox{d} t}\,(\cdot ) \] and the related linear differential equation $L(x)(t)+x(t)=0$. We study the relations between $L$, its adjoint operator, the canonical representation of $L$, the operator obtained by a cyclic permutation of coefficients $a_i$, $ i=1,2,3$, in $L$ and the relations between the corresponding equations. We give the commutative diagrams for such equations and show some applications (oscillation, property A). (English) |
Keyword:
|
Differential operators |
Keyword:
|
linear differential equation of third order |
Keyword:
|
canonical forms |
Keyword:
|
adjoint equation |
Keyword:
|
cyclic permutation |
Keyword:
|
oscillatory solution |
Keyword:
|
Kneser solution |
Keyword:
|
property $\mathrm A$ |
MSC:
|
34A30 |
MSC:
|
34C10 |
MSC:
|
34C20 |
idZBL:
|
Zbl 0903.34032 |
idMR:
|
MR1479316 |
. |
Date available:
|
2009-09-24T10:10:07Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127390 |
. |
Reference:
|
[1] Bartušek M.: Asymptotic properties of oscillatory solutions of differential equations of the $n$-th order.Folia Fac. Sci. Nat. Univ. Brunensis Masarykianae (1992). MR 1271586 |
Reference:
|
[2] Bartušek, M., Došlá Z.: Oscillatory criteria for nonlinear third order differential equations with quasiderivatives.Diff. equation and Dynam. Syst. 3 (1995), 251–268. MR 1386748 |
Reference:
|
[3] Cecchi M.: Oscillation criteria for a class of third order linear differential equations.Boll. Un. Mat. Ital., VI, 2–C (1983), 297–306. Zbl 0523.34029, MR 0718377 |
Reference:
|
[4] Cecchi M.: Sul comportamento delle soluzioni di una classe di equazioni differenziali lineari del terzo ordine in caso di oscillazione.Boll. Un. Mat. Ital., VI, 4–C 4 (1985), 71–85. |
Reference:
|
[5] Cecchi M., Marini M.: Oscillation properties of third order nonlinear differential equation.Nonlinear Analysis, Th. M. Appl. 15 (1990), 141–153. 10.1016/0362-546X(90)90118-Z |
Reference:
|
[6] Cecchi M., Došlá Z., Marini M., Villari G.: On the qualitative behavior of solutions of third order differential equations.J. Math. Anal. Appl. 197 (1996), 749–766. MR 1373077, 10.1006/jmaa.1996.0050 |
Reference:
|
[7] Cecchi M., Marini M., Villari G.: On a cyclic disconjugated operator associated to linear differential equations.Annali Mat. Pura Appl. IV CLXX (1996), 297–309. MR 1441623 |
Reference:
|
[8] Coppel W.A.: Disconjugacy.Springer-Verlag 1971, Lectures Notes in Math. 220. Zbl 0224.34003, MR 0460785 |
Reference:
|
[9] Dolan J. M.: On the relationship between the oscillatory behavior of a linear third-order differential equation and its adjoint.J. Diff. Equat. 7 (1970), 367–388. Zbl 0191.10001, MR 0255908, 10.1016/0022-0396(70)90116-6 |
Reference:
|
[10] Elias U.: Nonoscillation and eventual disconjugacy.Proc. Amer.Math. Soc. 66 (1977), 269–275. Zbl 0367.34024, MR 0460791, 10.1090/S0002-9939-1977-0460791-8 |
Reference:
|
[11] Erbe L.: Oscillation, nonoscillation, and asymptotic behavior for third order nonlinear differential equations.Annali Mat. Pura Appl. IV, 110 (1976), 373–391. Zbl 0345.34023, MR 0427738, 10.1007/BF02418014 |
Reference:
|
[12] Gaudenzi M.: On the Sturm-Picone theorem for $n$th–order differential equations.Siam J. Math. Anal. 21 (1990), 980–994. MR 1052882, 10.1137/0521054 |
Reference:
|
[13] Greguš M.: Third Order Linear Differential Equations.D. Reidel Publ. Comp., Dordrecht, Boston, Lancaster, Tokyo, 1987. MR 0882545 |
Reference:
|
[14] Hanan M.: Oscillation criteria for third-order linear differential equation.Pacific J. Math. 11 (1961), 919-944. MR 0145160, 10.2140/pjm.1961.11.919 |
Reference:
|
[15] Chanturia T.A.: On oscillatory properties of systems of nonlinear ordinary differential equations (Russian).Trudy universiteta prikladnoj matematiky, Tbilisi 14 (1983), 163–203. MR 0741463 |
Reference:
|
[16] Kiguradze I. T., Chanturia T.A.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations.Kluwer Academic Publishers, Dordrecht-Boston-London (1993, 432 pp). MR 1220223 |
Reference:
|
[17] Kusano T., Naito M., Tanaka K.: Oscillatory and asymptotic behavior of solutions of a class of linear ordinary differential equations.Proc. Royal Soc. Edinburgh 90A (1981), 24–40. MR 0636062 |
Reference:
|
[18] Lazer A. C.: The behaviour of solutions of the differential equation $y^{\prime \prime \prime }+p(x)y^{\prime }+q(x)y=0$.Pacific J. Math. 17 (1966), 435–466. MR 0193332 |
Reference:
|
[19] Ohriska J.: Oscillatory and asymptotic properties of third and fourth order linear differential equations.Czech. Math. J. 39 (114) (1989), 215–224. Zbl 0688.34018, MR 0992128 |
Reference:
|
[20] Swanson C. A.: Comparison and Oscillation Theory of Linear Differential Equations.Acad. Press, New York, 1968. Zbl 0191.09904, MR 0463570 |
Reference:
|
[21] Švec M.: Behaviour of nonoscillatory solutions of some nonlinear differential equations.Acta Math. Univ. Comenianae 34 (1980), 115–130. |
Reference:
|
[22] Trench W. F.: Canonical forms and principal systems for general disconjugate equations.TAMS 189 (1974), 319–327. Zbl 0289.34051, MR 0330632, 10.1090/S0002-9947-1974-0330632-X |
. |