Previous |  Up |  Next

Article

Title: Some properties of third order differential operators (English)
Author: Cecchi, M.
Author: Došlá, Z.
Author: Marini, M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 47
Issue: 4
Year: 1997
Pages: 729-748
Summary lang: English
.
Category: math
.
Summary: Consider the third order differential operator $L$ given by \[L(\cdot )\equiv \,\frac {1}{a_3(t)}\frac {\mbox{d}}{\mbox{d} t}\frac {1}{a_2(t)}\frac {\mbox{d}}{\mbox{d} t} \frac {1}{a_1(t)}\frac {\mbox{d}}{\mbox{d} t}\,(\cdot ) \] and the related linear differential equation $L(x)(t)+x(t)=0$. We study the relations between $L$, its adjoint operator, the canonical representation of $L$, the operator obtained by a cyclic permutation of coefficients $a_i$, $ i=1,2,3$, in $L$ and the relations between the corresponding equations. We give the commutative diagrams for such equations and show some applications (oscillation, property A). (English)
Keyword: Differential operators
Keyword: linear differential equation of third order
Keyword: canonical forms
Keyword: adjoint equation
Keyword: cyclic permutation
Keyword: oscillatory solution
Keyword: Kneser solution
Keyword: property $\mathrm A$
MSC: 34A30
MSC: 34C10
MSC: 34C20
idZBL: Zbl 0903.34032
idMR: MR1479316
.
Date available: 2009-09-24T10:10:07Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127390
.
Reference: [1] Bartušek M.: Asymptotic properties of oscillatory solutions of differential equations of the $n$-th order.Folia Fac. Sci. Nat. Univ. Brunensis Masarykianae (1992). MR 1271586
Reference: [2] Bartušek, M., Došlá Z.: Oscillatory criteria for nonlinear third order differential equations with quasiderivatives.Diff. equation  and Dynam. Syst. 3 (1995), 251–268. MR 1386748
Reference: [3] Cecchi M.: Oscillation criteria for a class of third order linear differential equations.Boll. Un. Mat. Ital., VI, 2–C (1983), 297–306. Zbl 0523.34029, MR 0718377
Reference: [4] Cecchi M.: Sul comportamento delle soluzioni di una classe di equazioni differenziali lineari del terzo ordine in caso di oscillazione.Boll. Un. Mat. Ital., VI, 4–C 4 (1985), 71–85.
Reference: [5] Cecchi M., Marini M.: Oscillation properties of third order nonlinear differential equation.Nonlinear Analysis, Th. M. Appl. 15 (1990), 141–153. 10.1016/0362-546X(90)90118-Z
Reference: [6] Cecchi M., Došlá Z., Marini M., Villari G.: On the qualitative behavior of solutions of third order differential equations.J. Math. Anal. Appl. 197 (1996), 749–766. MR 1373077, 10.1006/jmaa.1996.0050
Reference: [7] Cecchi M., Marini M., Villari G.: On a cyclic disconjugated operator associated to linear differential equations.Annali Mat. Pura Appl. IV CLXX (1996), 297–309. MR 1441623
Reference: [8] Coppel W.A.: Disconjugacy.Springer-Verlag 1971, Lectures Notes in Math. 220. Zbl 0224.34003, MR 0460785
Reference: [9] Dolan J. M.: On the relationship between the oscillatory behavior of a linear third-order differential equation and its adjoint.J. Diff. Equat. 7 (1970), 367–388. Zbl 0191.10001, MR 0255908, 10.1016/0022-0396(70)90116-6
Reference: [10] Elias U.: Nonoscillation and eventual disconjugacy.Proc. Amer.Math. Soc. 66 (1977), 269–275. Zbl 0367.34024, MR 0460791, 10.1090/S0002-9939-1977-0460791-8
Reference: [11] Erbe L.: Oscillation, nonoscillation, and asymptotic behavior for third order nonlinear differential equations.Annali Mat. Pura Appl. IV, 110 (1976), 373–391. Zbl 0345.34023, MR 0427738, 10.1007/BF02418014
Reference: [12] Gaudenzi M.: On the Sturm-Picone theorem for $n$th–order differential equations.Siam J. Math. Anal. 21 (1990), 980–994. MR 1052882, 10.1137/0521054
Reference: [13] Greguš M.: Third Order Linear Differential Equations.D. Reidel Publ. Comp., Dordrecht, Boston, Lancaster, Tokyo, 1987. MR 0882545
Reference: [14] Hanan M.: Oscillation criteria for third-order linear differential equation.Pacific J. Math. 11 (1961), 919-944. MR 0145160, 10.2140/pjm.1961.11.919
Reference: [15] Chanturia T.A.: On oscillatory properties of systems of nonlinear ordinary differential equations (Russian).Trudy universiteta prikladnoj matematiky, Tbilisi 14 (1983), 163–203. MR 0741463
Reference: [16] Kiguradze I. T., Chanturia T.A.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations.Kluwer Academic Publishers, Dordrecht-Boston-London (1993, 432 pp). MR 1220223
Reference: [17] Kusano T., Naito M., Tanaka K.: Oscillatory and asymptotic behavior of solutions of a class of linear ordinary differential equations.Proc. Royal Soc. Edinburgh 90A (1981), 24–40. MR 0636062
Reference: [18] Lazer A. C.: The behaviour of solutions of the differential equation $y^{\prime \prime \prime }+p(x)y^{\prime }+q(x)y=0$.Pacific J. Math. 17 (1966), 435–466. MR 0193332
Reference: [19] Ohriska J.: Oscillatory and asymptotic properties of third and fourth order linear differential equations.Czech. Math. J. 39 (114) (1989), 215–224. Zbl 0688.34018, MR 0992128
Reference: [20] Swanson C. A.: Comparison and Oscillation Theory of Linear Differential Equations.Acad. Press, New York, 1968. Zbl 0191.09904, MR 0463570
Reference: [21] Švec M.: Behaviour of nonoscillatory solutions of some nonlinear differential equations.Acta Math. Univ. Comenianae 34 (1980), 115–130.
Reference: [22] Trench W. F.: Canonical forms and principal systems for general disconjugate equations.TAMS 189 (1974), 319–327. Zbl 0289.34051, MR 0330632, 10.1090/S0002-9947-1974-0330632-X
.

Files

Files Size Format View
CzechMathJ_47-1997-4_12.pdf 2.181Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo