Previous |  Up |  Next

Article

Title: Double convergence and products of Fréchet spaces (English)
Author: Novák, Josef
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 48
Issue: 2
Year: 1998
Pages: 207-227
Summary lang: English
.
Category: math
.
Summary: The paper is devoted to convergence of double sequences and its application to products. In a convergence space we recognize three types of double convergences and points, respectively. We give examples and describe their structure and properties. We investigate the relationship between the topological and convergence closure product of two Fréchet spaces. In particular, we give a necessary and sufficient condition for the topological product of two compact Hausdorff Fréchet spaces to be a Fréchet space. (English)
MSC: 46A04
MSC: 46A19
MSC: 54A20
idZBL: Zbl 0954.46002
idMR: MR1624303
.
Date available: 2009-09-24T10:12:48Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127412
.
Reference: [AR79] Arhangel’skiǐ, A. V.: The frequency spectrum of a topological space and the product operation.Trudy Moskovs. Mat. Obshch. 40 (1979), 171–206. (Russian) MR 0550259
Reference: [BR74] Boehme, T. K. and Rosenfeld, M.: An example of two compact Fréchet Hausdorff spaces, whose product is not Fréchet.J. London Math. Soc. 8 (1974), 339–344. MR 0343242, 10.1112/jlms/s2-8.2.339
Reference: [FV85] Frič, R. and Vojtáš, P.: Diagonal conditions in sequential convergence.Convergence Structures 1984 (Proc. Conf. on Convergence, Bechyně, 1984), Akademie-Verlag, Mathematical Research/ Mathematische Forschung Bd. 24, Berlin, 1985, pp. 77–94. MR 0835474
Reference: [KC75] Kendrick, C. T.: On products of Fréchet spaces.Math. Nachr. 65 (1975), 117–123. Zbl 0295.54008, MR 0362180, 10.1002/mana.19750650109
Reference: [KE71] Kent, D. C.: Decisive convergence spaces, sequential spaces, and Fréchet spaces.Rocky Mtn. J. Math. 1 (1971), 367–374. MR 0276916, 10.1216/RMJ-1971-1-2-367
Reference: [KO85] Koutník, V.: Closure and topological sequential convergence.Convergence Structures 1984 (Proc. Conf. on Convergence, Bechyně, 1984), Akademie-Verlag, Mathematical Research/Mathematische Forschung Bd. 24, Berlin, 1985, pp. 199–204. MR 0835486
Reference: [KR77] Kratochvíl, P.: Multisequences and measure.Gnereal Topology and its Relations to Modern Analysis and Algebra, IV (Proc. Fourth Prague Topological Sympos., 1976) Part B Contributed Papers, Society of Czechoslovak Mathematicians and Physicists, Praha 1977, pp. 237–244. MR 0448277
Reference: [MI72] Michael, E.: A quintuple quotient quest. Gen. Top. Appl. 2.(1972), 91–138. MR 0309045
Reference: [NO69] Novák, J.: On some topological spaces represented by systems of sets.Topology and its Applications (Proc. Int. Symposium, Herceg-Novi, 1968). Beograd, 1969, pp. 269–270.
Reference: [NO77] Novák, J.: Concerning the topological product of two Fréchet spaces.Gnereal Topology and its Relations to Modern Analysis and Algebra, IV (Proc. Fourth Prague Topological Sympos., 1976), Part B Contributed Papers, Society of Czechoslovak Mathematicians and Physicists, Praha 1977, pp. 342–343. MR 0448277
Reference: [NO85] Novák, J.: Convergence of double sequences.Convergence Structures 1984 (Proc. Conf. on Convergence, Bechyně, 1984), Akademie-Verlag, Mathematical Research/ Mathematische Forschung Bd. 24, Berlin, 1985, pp. 233–243. MR 0835491
Reference: [SI80] Simon, P.: A compact Fréchet space whose square is not Fréchet.Comment. Math. Univ. Carolinae 21 (1980), 749–753. Zbl 0466.54022, MR 0597764
.

Files

Files Size Format View
CzechMathJ_48-1998-2_2.pdf 446.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo